Visible to the public Biblio

Filters: Author is Chua, Zheng Leong  [Clear All Filters]
2022-03-15
Baluta, Teodora, Chua, Zheng Leong, Meel, Kuldeep S., Saxena, Prateek.  2021.  Scalable Quantitative Verification for Deep Neural Networks. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :248—249.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques pro- vide either scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO1 and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack- agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.
2017-09-19
Shinde, Shweta, Chua, Zheng Leong, Narayanan, Viswesh, Saxena, Prateek.  2016.  Preventing Page Faults from Telling Your Secrets. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :317–328.

New hardware primitives such as Intel SGX secure a user-level process in presence of an untrusted or compromised OS. Such "enclaved execution" systems are vulnerable to several side-channels, one of which is the page fault channel. In this paper, we show that the page fault side-channel has sufficient channel capacity to extract bits of encryption keys from commodity implementations of cryptographic routines in OpenSSL and Libgcrypt – leaking 27% on average and up to 100% of the secret bits in many case-studies. To mitigate this, we propose a software-only defense that masks page fault patterns by determinising the program's memory access behavior. We show that such a technique can be built into a compiler, and implement it for a subset of C which is sufficient to handle the cryptographic routines we study. This defense when implemented generically can have significant overhead of up to 4000X, but with help of developer-assisted compiler optimizations, the overhead reduces to at most 29.22% in our case studies. Finally, we discuss scope for hardware-assisted defenses, and show one solution that can reduce overheads to 6.77% with support from hardware changes.

2017-09-11
Jia, Yaoqi, Chua, Zheng Leong, Hu, Hong, Chen, Shuo, Saxena, Prateek, Liang, Zhenkai.  2016.  "The Web/Local" Boundary Is Fuzzy: A Security Study of Chrome's Process-based Sandboxing. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :791–804.

Process-based isolation, suggested by several research prototypes, is a cornerstone of modern browser security architectures. Google Chrome is the first commercial browser that adopts this architecture. Unlike several research prototypes, Chrome's process-based design does not isolate different web origins, but primarily promises to protect "the local system" from "the web". However, as billions of users now use web-based cloud services (e.g., Dropbox and Google Drive), which are integrated into the local system, the premise that browsers can effectively isolate the web from the local system has become questionable. In this paper, we argue that, if the process-based isolation disregards the same-origin policy as one of its goals, then its promise of maintaining the "web/local system (local)" separation is doubtful. Specifically, we show that existing memory vulnerabilities in Chrome's renderer can be used as a stepping-stone to drop executables/scripts in the local file system, install unwanted applications and misuse system sensors. These attacks are purely data-oriented and do not alter any control flow or import foreign code. Thus, such attacks bypass binary-level protection mechanisms, including ASLR and in-memory partitioning. Finally, we discuss various full defenses and present a possible way to mitigate the attacks presented.