Visible to the public Biblio

Filters: Author is Lin, Qiongzheng  [Clear All Filters]
2018-08-23
Yang, Lei, Lin, Qiongzheng, Duan, Chunhui, An, Zhenlin.  2017.  Analog On-Tag Hashing: Towards Selective Reading As Hash Primitives in Gen2 RFID Systems. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking. :301–314.
Deployment of billions of Commercial Off-The-Shelf (COTS) RFID tags has drawn much of the attention of the research community because of the performance gaps of current systems. In particular, hash-enabled protocol (HEP) is one of the most thoroughly studied topics in the past decade. HEPs are designed for a wide spectrum of notable applications (e.g., missing detection) without need to collect all tags. HEPs assume that each tag contains a hash function, such that a tag can select a random but predicable time slot to reply with a one-bit presence signal that shows its existence. However, the hash function has never been implemented in COTS tags in reality, which makes HEPs a 10-year untouchable mirage. This work designs and implements a group of analog on-tag hash primitives (called Tash) for COTS Gen2-compatible RFID systems, which moves prior HEPs forward from theory to practice. In particular, we design three types of hash primitives, namely, tash function, tash table function and tash operator. All of these hash primitives are implemented through selective reading, which is a fundamental and mandatory functionality specified in Gen2 protocol, without any hardware modification and fabrication. We further apply our hash primitives in two typical HEP applications (i.e., cardinality estimation and missing detection) to show the feasibility and effectiveness of Tash. Results from our prototype, which is composed of one ImpinJ reader and 3,000 Alien tags, demonstrate that the new design lowers 60% of the communication overhead in the air. The tash operator can additionally introduce an overhead drop of 29.7%.
2017-09-15
Yang, Lei, Li, Yao, Lin, Qiongzheng, Li, Xiang-Yang, Liu, Yunhao.  2016.  Making Sense of Mechanical Vibration Period with Sub-millisecond Accuracy Using Backscatter Signals. Proceedings of the 22Nd Annual International Conference on Mobile Computing and Networking. :16–28.

Traditional vibration inspection systems, equipped with separated sensing and communication modules, are either very expensive (e.g., hundreds of dollars) and/or suffer from occlusion and narrow field of view (e.g., laser). In this work, we present an RFID-based solution, Tagbeat, to inspect mechanical vibration using COTS RFID tags and readers. Making sense of micro and high-frequency vibration using random and low-frequency readings of tag has been a daunting task, especially challenging for achieving sub-millisecond period accuracy. Our system achieves these three goals by discerning the change pattern of backscatter signal replied from the tag, which is attached on the vibrating surface and displaced by the vibration within a small range. This work introduces three main innovations. First, it shows how one can utilize COTS RFID to sense mechanical vibration and accurately discover its period with a few periods of short and noisy samples. Second, a new digital microscope is designed to amplify the micro-vibration-induced weak signals. Third, Tagbeat introduces compressive reading to inspect high-frequency vibration with relatively low RFID read rate. We implement Tagbeat using a COTS RFID device and evaluate it with a commercial centrifugal machine. Empirical benchmarks with a prototype show that Tagbeat can inspect the vibration period with a mean accuracy of 0.36ms and a relative error rate of 0.03%. We also study three cases to demonstrate how to associate our inspection solution with the specific domain requirements.