Biblio
Convolution serves as the basic computational primitive for various associative computing tasks ranging from edge detection to image matching. CMOS implementation of such computations entails significant bottlenecks in area and energy consumption due to the large number of multiplication and addition operations involved. In this paper, we propose an ultra-low power and compact hybrid spintronic-CMOS design for the convolution computing unit. Low-voltage operation of domain-wall motion based magneto-metallic "Spin-Memristor"s interfaced with CMOS circuits is able to perform the convolution operation with reasonable accuracy. Simulation results of Gabor filtering for edge detection reveal \textasciitilde 2.5× lower energy consumption compared to a baseline 45nm-CMOS implementation.