Visible to the public Biblio

Filters: Author is Narsimha, G.  [Clear All Filters]
2018-05-02
Shanthi, D., Mohanty, R. K., Narsimha, G., Aruna, V..  2017.  Application of partical swarm intelligence technique to predict software reliability. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :629–635.

Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.

2017-09-19
Jahan, Thanveer, Narsimha, G., Rao, C. V. Guru.  2016.  Multiplicative Data Perturbation Using Fuzzy Logic in Preserving Privacy. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :38:1–38:5.

In Data mining is the method of extracting the knowledge from huge amount of data and interesting patterns. With the rapid increase of data storage, cloud and service-based computing, the risk of misuse of data has become a major concern. Protecting sensitive information present in the data is crucial and critical. Data perturbation plays an important role in privacy preserving data mining. The major challenge of privacy preserving is to concentrate on factors to achieve privacy guarantee and data utility. We propose a data perturbation method that perturbs the data using fuzzy logic and random rotation. It also describes aspects of comparable level of quality over perturbed data and original data. The comparisons are illustrated on different multivariate datasets. Experimental study has proved the model is better in achieving privacy guarantee of data, as well as data utility.