Visible to the public Biblio

Filters: Author is Leinonen, Juho  [Clear All Filters]
2023-03-03
Shrestha, Raj, Leinonen, Juho, Zavgorodniaia, Albina, Hellas, Arto, Edwards, John.  2022.  Pausing While Programming: Insights From Keystroke Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). :187–198.
Pauses in typing are generally considered to indicate cognitive processing and so are of interest in educational contexts. While much prior work has looked at typing behavior of Computer Science students, this paper presents results of a study specifically on the pausing behavior of students in Introductory Computer Programming. We investigate the frequency of pauses of different lengths, what last actions students take before pausing, and whether there is a correlation between pause length and performance in the course. We find evidence that frequency of pauses of all lengths is negatively correlated with performance, and that, while some keystrokes initiate pauses consistently across pause lengths, other keystrokes more commonly initiate short or long pauses. Clustering analysis discovers two groups of students, one that takes relatively fewer mid-to-long pauses and performs better on exams than the other.
2017-09-19
Leinonen, Juho, Longi, Krista, Klami, Arto, Ahadi, Alireza, Vihavainen, Arto.  2016.  Typing Patterns and Authentication in Practical Programming Exams. Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education. :160–165.

In traditional programming courses, students have usually been at least partly graded using pen and paper exams. One of the problems related to such exams is that they only partially connect to the practice conducted within such courses. Testing students in a more practical environment has been constrained due to the limited resources that are needed, for example, for authentication. In this work, we study whether students in a programming course can be identified in an exam setting based solely on their typing patterns. We replicate an earlier study that indicated that keystroke analysis can be used for identifying programmers. Then, we examine how a controlled machine examination setting affects the identification accuracy, i.e. if students can be identified reliably in a machine exam based on typing profiles built with data from students' programming assignments from a course. Finally, we investigate the identification accuracy in an uncontrolled machine exam, where students can complete the exam at any time using any computer they want. Our results indicate that even though the identification accuracy deteriorates when identifying students in an exam, the accuracy is high enough to reliably identify students if the identification is not required to be exact, but top k closest matches are regarded as correct.