Visible to the public Biblio

Filters: Author is Mori, Tatsuya  [Clear All Filters]
2022-10-13
Sakurai, Yuji, Watanabe, Takuya, Okuda, Tetsuya, Akiyama, Mitsuaki, Mori, Tatsuya.  2020.  Discovering HTTPSified Phishing Websites Using the TLS Certificates Footprints. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :522—531.
With the recent rise of HTTPS adoption on the Web, attackers have begun "HTTPSifying" phishing websites. HTTPSifying a phishing website has the advantage of making the website appear legitimate and evading conventional detection methods that leverage URLs or web contents in the network. Further, adopting HTTPS could also contribute to generating intrinsic footprints and provide defenders with a great opportunity to monitor and detect websites, including phishing sites, as they would need to obtain a public-key certificate issued for the preparation of the websites. The potential benefits of certificate-based detection include: (1) the comprehensive monitoring of all HTTPSified websites by using certificates immediately after their issuance, even if the attacker utilizes dynamic DNS (DDNS) or hosting services; this could be overlooked with the conventional domain-registration-based approaches; and (2) to detect phishing websites before they are published on the Internet. Accordingly, we address the following research question: How can we make use of the footprints of TLS certificates to defend against phishing attacks? For this, we collected a large set of TLS certificates corresponding to phishing websites from Certificate Transparency (CT) logs and extensively analyzed these TLS certificates. We demonstrated that a template of common names, which are equivalent to the fully qualified domain names, obtained through the clustering analysis of the certificates can be used for the following promising applications: (1) The discovery of previously unknown phishing websites with low false positives and (2) understanding the infrastructure used to generate the phishing websites. We use our findings on the abuse of free certificate authorities (CAs) for operating HTTPSified phishing websites to discuss possible solutions against such abuse and provide a recommendation to the CAs.
2017-09-19
Sun, Bo, Fujino, Akinori, Mori, Tatsuya.  2016.  POSTER: Toward Automating the Generation of Malware Analysis Reports Using the Sandbox Logs. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1814–1816.

In recent years, the number of new examples of malware has continued to increase. To create effective countermeasures, security specialists often must manually inspect vast sandbox logs produced by the dynamic analysis method. Conversely, antivirus vendors usually publish malware analysis reports on their website. Because malware analysis reports and sandbox logs do not have direct connections, when analyzing sandbox logs, security specialists can not benefit from the information described in such expert reports. To address this issue, we developed a system called ReGenerator that automates the generation of reports related to sandbox logs by making use of existing reports published by antivirus vendors. Our system combines several techniques, including the Jaccard similarity, Natural Language Processing (NLP), and Generation (NLG), to produce concise human-readable reports describing malicious behavior for security specialists.