Visible to the public Biblio

Filters: Author is Camp, L. Jean  [Clear All Filters]
2017-09-26
Benton, Kevin, Camp, L. Jean.  2016.  Firewalling Scenic Routes: Preventing Data Exfiltration via Political and Geographic Routing Policies. Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :31–36.

In this paper we describe a system that allows the real time creation of firewall rules in response to geographic and political changes in the control-plane. This allows an organization to mitigate data exfiltration threats by analyzing Border Gateway Protocol (BGP) updates and blocking packets from being routed through problematic jurisdictions. By inspecting the autonomous system paths and referencing external data sources about the autonomous systems, a BGP participant can infer the countries that traffic to a particular destination address will traverse. Based on this information, an organization can then define constraints on its egress traffic to prevent sensitive data from being sent via an untrusted region. In light of the many route leaks and BGP hijacks that occur today, this offers a new option to organizations willing to accept reduced availability over the risk to confidentiality. Similar to firewalls that allow organizations to block traffic originating from specific countries, our approach allows blocking outbound traffic from transiting specific jurisdictions. To illustrate the efficacy of this approach, we provide an analysis of paths to various financial services IP addresses over the course of a month from a single BGP vantage point that quantifies the frequency of path alterations resulting in the traversal of new countries. We conclude with an argument for the utility of country-based egress policies that do not require the cooperation of upstream providers.