Biblio
Filters: Author is Wang, Hao [Clear All Filters]
FPTSA-SLP: A Fake Packet Time Slot Assignment-based Source Location Privacy Protection Scheme in Underwater Acoustic Sensor Networks. 2021 Computing, Communications and IoT Applications (ComComAp). :307–311.
.
2021. Nowadays, source location privacy in underwater acoustic sensor networks (UASNs) has gained a lot of attention. The aim of source location privacy is to use specific technologies to protect the location of the source from being compromised. Among the many technologies available are fake packet technology, multi-path routing technology and so on. The fake packet technology uses a certain amount of fake packets to mask the transmission of the source packet, affecting the adversary's efficiency of hop-by-hop backtracking to the source. However, during the operation of the fake packet technology, the fake packet, and the source packet may interfere with each other. Focus on this, a fake packet time slot assignment-based source location privacy protection (FPTSA-SLP) scheme. The time slot assignment is adopted to avoid interference with the source packet. Also, a relay node selection method based on the handshake is further proposed to increase the diversity of the routing path to confuse the adversary. Compared with the comparison algorithm, the simulation results demonstrate that the proposed scheme has a better performance in safety time.
Ciphertext-Policy Attribute-Based Encryption with Multi-keyword Search over Medical Cloud Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :277—284.
.
2020. Over the years, public health has faced a large number of challenges like COVID-19. Medical cloud computing is a promising method since it can make healthcare costs lower. The computation of health data is outsourced to the cloud server. If the encrypted medical data is not decrypted, it is difficult to search for those data. Many researchers have worked on searchable encryption schemes that allow executing searches on encrypted data. However, many existing works support single-keyword search. In this article, we propose a patient-centered fine-grained attribute-based encryption scheme with multi-keyword search (CP-ABEMKS) for medical cloud computing. First, we leverage the ciphertext-policy attribute-based technique to construct trapdoors. Then, we give a security analysis. Besides, we provide a performance evaluation, and the experiments demonstrate the efficiency and practicality of the proposed CP-ABEMKS.
A Protecting Source-Location Privacy Scheme for Wireless Sensor Networks. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–5.
.
2018. An exciting network called smart IoT has great potential to improve the level of our daily activities and the communication. Source location privacy is one of the critical problems in the wireless sensor network (WSN). Privacy protections, especially source location protection, prevent sensor nodes from revealing valuable information about targets. In this paper, we first discuss about the current security architecture and attack modes. Then we propose a scheme based on cloud for protecting source location, which is named CPSLP. This proposed CPSLP scheme transforms the location of the hotspot to cause an obvious traffic inconsistency. We adopt multiple sinks to change the destination of packet randomly in each transmission. The intermediate node makes routing path more varied. The simulation results demonstrate that our scheme can confuse the detection of adversary and reduce the capture probability.
On Analyzing Eavesdropping Behaviours in Underwater Acoustic Sensor Networks. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :53:1–53:2.
.
2016. Underwater Acoustic Sensor Networks (UWASNs) have the wide of applications with the proliferation of the increasing underwater activities recently. Most of current studies are focused on designing protocols to improve the network performance of WASNs. However, the security of UWASNs is also an important concern since malicious nodes can easily wiretap the information transmitted in UWASNs due to the vulnerability of UWASNs. In this paper, we investigate one of security problems in UWASNs - eavesdropping behaviours. In particular, we propose a general model to quantitatively evaluate the probability of eavesdropping behaviour in UWASNs. Simulation results also validate the accuracy of our proposed model.