Biblio
Internet of Things (IoT) era has gradually entered our life, with the rapid development of communication and embedded system, IoT technology has been widely used in many fields. Therefore, to maintain the security of the IoT system is becoming a priority of the successful deployment of IoT networks. This paper presents an intrusion detection model based on improved Deep Belief Network (DBN). Through multiple iterations of the genetic algorithm (GA), the optimal network structure is generated adaptively, so that the intrusion detection model based on DBN achieves a high detection rate. Finally, the KDDCUP data set was used to simulate and evaluate the model. Experimental results show that the improved intrusion detection model can effectively improve the detection rate of intrusion attacks.
Network functions (NFs), like firewall, NAT, IDS, have been widely deployed in today’s modern networks. However, currently there is no standard specification or modeling language that can accurately describe the complexity and diversity of different NFs. Recently there have been research efforts to propose NF models. However, they are often generated manually and thus error-prone. This paper proposes a method to automatically synthesize NF models via program analysis. We develop a tool called NFactor, which conducts code refactoring and program slicing on NF source code, in order to generate its forwarding model. We demonstrate its usefulness on two NFs and evaluate its correctness. A few applications of NFactor are described, including network verification.