Visible to the public Biblio

Filters: Author is Lu, Yiqin  [Clear All Filters]
2020-05-08
Fu, Tian, Lu, Yiqin, Zhen, Wang.  2019.  APT Attack Situation Assessment Model Based on optimized BP Neural Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2108—2111.
In this paper, it first analyzed the characteristics of Advanced Persistent Threat (APT). according to APT attack, this paper established an BP neural network optimized by improved adaptive genetic algorithm to predict the security risk of nodes in the network. and calculated the path of APT attacks with the maximum possible attack. Finally, experiments verify the effectiveness and correctness of the algorithm by simulating attacks. Experiments show that this model can effectively evaluate the security situation in the network, For the defenders to adopt effective measures defend against APT attacks, thus improving the security of the network.
2017-10-03
Lu, Yiqin, Wang, Meng.  2016.  An Easy Defense Mechanism Against Botnet-based DDoS Flooding Attack Originated in SDN Environment Using sFlow. Proceedings of the 11th International Conference on Future Internet Technologies. :14–20.

As today's networks become larger and more complex, the Distributed Denial of Service (DDoS) flooding attack threats may not only come from the outside of networks but also from inside, such as cloud computing network where exists multiple tenants possibly containing malicious tenants. So, the need of source-based defense mechanism against such attacks is pressing. In this paper, we mainly focus on the source-based defense mechanism against Botnet-based DDoS flooding attack through combining the power of Software-Defined Networking (SDN) and sample flow (sFlow) technology. Firstly, we defined a metric to measure the essential features of this kind attack which means distribution and collaboration. Then we designed a simple detection algorithm based on statistical inference model and response scheme through the abilities of SDN. Finally, we developed an application to realize our idea and also tested its effect on emulation network with real network traffic. The result shows that our mechanism could effectively detect DDoS flooding attack originated in SDN environment and identify attack flows for avoiding the harm of attack spreading to target or outside. We advocate the advantages of SDN in the area of defending DDoS attacks, because it is difficult and laborious to organize selfish and undisciplined traditional distributed network to confront well collaborative DDoS flooding attacks.