Visible to the public Biblio

Filters: Author is Yang, Chen  [Clear All Filters]
2022-10-03
Yang, Chen, Jia, Zhen, Li, Shundong.  2021.  Privacy-Preserving Proximity Detection Framework for Location-Based Services. 2021 International Conference on Networking and Network Applications (NaNA). :99–106.
With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.
2022-02-07
Yang, Chen, Yang, Zepeng, Hou, Jia, Su, Yang.  2021.  A Lightweight Full Homomorphic Encryption Scheme on Fully-connected Layer for CNN Hardware Accelerator achieving Security Inference. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–4.
The inference results of neural network accelerators often involve personal privacy or business secrets in intelligent systems. It is important for the safety of convolutional neural network (CNN) accelerator to prevent the key data and inference result from being leaked. The latest CNN models have started to combine with fully homomorphic encryption (FHE), ensuring the data security. However, the computational complexity, data storage overhead, inference time are significantly increased compared with the traditional neural network models. This paper proposed a lightweight FHE scheme on fully-connected layer for CNN hardware accelerator to achieve security inference, which not only protects the privacy of inference results, but also avoids excessive hardware overhead and great performance degradation. Compared with state-of-the-art works, this work reduces computational complexity by approximately 90% and decreases ciphertext size by 87%∼95%.
2020-02-17
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
2017-10-03
Yang, Chen, Stoleru, Radu.  2016.  Hybrid Routing in Wireless Networks with Diverse Connectivity. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :71–80.

Real world wireless networks usually have diverse connectivity characteristics. Although existing works have identified replication as the key to the successful design of routing protocols for these networks, the questions of when the replication should be used, by how much, and how to distribute packet copies are still not satisfactorily answered. In this paper, we investigate the above questions and present the design of the Hybrid Routing Protocol (HRP). We make a key observation that delay correlations can significantly impact performance improvements gained from packet replication. Thus, we propose a novel model to capture the correlations of inter-contact times among a group of nodes. HRP utilizes both direct delays feedback and the proposed model to estimate the replication gain, which is then fed into a novel regret-minimization algorithm to dynamically decide the amount of packet replication under unknown network conditions. We evaluate HRP through extensive simulations. We show that HRP achieves up to 3.5x delivery ratio improvement and up to 50% delay reduction, with comparable and even lower overhead than state-of-art routing protocols.