Biblio
The start-up value of an SRAM cell is unique, random, and unclonable as it is determined by the inherent process mismatch between transistors. These properties make SRAM an attractive circuit for generating encryption keys. The primary challenge for SRAM based key generation, however, is the poor stability when the circuit is subject to random noise, temperature and voltage changes, and device aging. Temporal majority voting (TMV) and bit masking were used in previous works to identify and store the location of unstable or marginally stable SRAM cells. However, TMV requires a long test time and significant hardware resources. In addition, the number of repetitive power-ups required to find the most stable cells is prohibitively high. To overcome the shortcomings of TMV, we propose a novel data remanence based technique to detect SRAM cells with the highest stability for reliable key generation. This approach requires only two remanence tests: writing `1' (or `0') to the entire array and momentarily shutting down the power until a few cells flip. We exploit the fact that the cells that are easily flipped are the most robust cells when written with the opposite data. The proposed method is more effective in finding the most stable cells in a large SRAM array than a TMV scheme with 1,000 power-up tests. Experimental studies show that the 256-bit key generated from a 512 kbit SRAM using the proposed data remanence method is 100% stable under different temperatures, power ramp up times, and device aging.
Sensing platforms are becoming batteryless to enable the vision of the Internet of Things, where trillions of devices collect data, interact with each other, and interact with people. However, these batteryless sensing platforms—that rely purely on energy harvesting—are rarely able to maintain a sense of time after a power failure. This makes working with sensor data that is time sensitive especially difficult. We propose two novel, zero-power timekeepers that use remanence decay to measure the time elapsed between power failures. Our approaches compute the elapsed time from the amount of decay of a capacitive device, either on-chip Static Random-Access Memory (SRAM) or a dedicated capacitor. This enables hourglass-like timers that give intermittently powered sensing devices a persistent sense of time. Our evaluation shows that applications using either timekeeper can keep time accurately through power failures as long as 45s with low overhead.
High-speed IP address lookup is essential to achieve wire-speed packet forwarding in Internet routers. Ternary content addressable memory (TCAM) technology has been adopted to solve the IP address lookup problem because of its ability to perform fast parallel matching. However, the applicability of TCAMs presents difficulties due to cost and power dissipation issues. Various algorithms and hardware architectures have been proposed to perform the IP address lookup using ordinary memories such as SRAMs or DRAMs without using TCAMs. Among the algorithms, we focus on two efficient algorithms providing high-speed IP address lookup: parallel multiple-hashing (PMH) algorithm and binary search on level algorithm. This paper shows how effectively an on-chip Bloom filter can improve those algorithms. A performance evaluation using actual backbone routing data with 15,000-220,000 prefixes shows that by adding a Bloom filter, the complicated hardware for parallel access is removed without search performance penalty in parallel-multiple hashing algorithm. Search speed has been improved by 30-40 percent by adding a Bloom filter in binary search on level algorithm.