Biblio
Binary embedding is an effective way for nearest neighbor (NN) search as binary code is storage efficient and fast to compute. It tries to convert real-value signatures into binary codes while preserving similarity of the original data. However, it greatly decreases the discriminability of original signatures due to the huge loss of information. In this paper, we propose a novel method double-bit quantization and weighting (DBQW) to solve the problem by mapping each dimension to double-bit binary code and assigning different weights according to their spatial relationship. The proposed method is applicable to a wide variety of embedding techniques, such as SH, PCA-ITQ and PCA-RR. Experimental comparisons on two datasets show that DBQW for NN search can achieve remarkable improvements in query accuracy compared to original binary embedding methods.
Currently, security protection in Industrial Control Systems has become a hot topic, and a great number of defense techniques have sprung up. As one of the most effective approaches, area isolation has the exceptional advantages and is widely used to prevent attacks or hazards propagating. However, most existing methods for inter-area communication protection present some limitations, i.e., excessively depending on the analyzing rules, affecting original communication. Additionally, the network architecture and data flow direction can hardly be adjusted after being deployed. To address these problems, a dynamical and customized communication protection technology is proposed in this paper. In detail, a security inter-area communication architecture based on Software Defined Network is designed firstly, where devices or subsystems can be dynamically added into or removed from the communication link. And then, a security inspection method based on information entropy is presented for deep network behaviors analysis. According to the security analysis results, the communications in the network can be adjusted in time. Finally, simulations are constructed, and the results indicate that the proposed approach is sensitive and effective for cyber-attacks detection.
The start-up value of an SRAM cell is unique, random, and unclonable as it is determined by the inherent process mismatch between transistors. These properties make SRAM an attractive circuit for generating encryption keys. The primary challenge for SRAM based key generation, however, is the poor stability when the circuit is subject to random noise, temperature and voltage changes, and device aging. Temporal majority voting (TMV) and bit masking were used in previous works to identify and store the location of unstable or marginally stable SRAM cells. However, TMV requires a long test time and significant hardware resources. In addition, the number of repetitive power-ups required to find the most stable cells is prohibitively high. To overcome the shortcomings of TMV, we propose a novel data remanence based technique to detect SRAM cells with the highest stability for reliable key generation. This approach requires only two remanence tests: writing `1' (or `0') to the entire array and momentarily shutting down the power until a few cells flip. We exploit the fact that the cells that are easily flipped are the most robust cells when written with the opposite data. The proposed method is more effective in finding the most stable cells in a large SRAM array than a TMV scheme with 1,000 power-up tests. Experimental studies show that the 256-bit key generated from a 512 kbit SRAM using the proposed data remanence method is 100% stable under different temperatures, power ramp up times, and device aging.
Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.