Visible to the public Biblio

Filters: Keyword is Latches  [Clear All Filters]
2021-10-04
Sweeney, Joseph, Mohammed Zackriya, V, Pagliarini, Samuel, Pileggi, Lawrence.  2020.  Latch-Based Logic Locking. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :132–141.
Globalization of IC manufacturing has led to increased security concerns, notably IP theft. Several logic locking techniques have been developed for protecting designs, but they typically display very large overhead, and are generally susceptible to deciphering attacks. In this paper, we propose latch-based logic locking, which manipulates both the flow of data and logic in the design. This method converts an interconnected subset of existing flip-flops to pairs of latches with programmable phase. In tandem, decoy latches and logic are added, inhibiting an attacker from determining the actual design functionality. To validate this technique, we developed and verified a locking insertion flow, analyzed PPA and ATPG overhead on benchmark circuits and industry cores, extended existing attacks to account for the technique, and taped out a demonstration chip. Importantly, we show that the design overhead with this approach is significantly less than with previous logic locking schemes, while resisting model checker-based, oracle-driven attacks. With minimal delay overhead, large numbers of decoy latches can be added, cheaply increasing attack resistance.
2020-12-07
Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S., Marochko, A., Mattoon, D., Spiger, R., Thom, S..  2019.  Dominance as a New Trusted Computing Primitive for the Internet of Things. 2019 IEEE Symposium on Security and Privacy (SP). :1415–1430.
The Internet of Things (IoT) is rapidly emerging as one of the dominant computing paradigms of this decade. Applications range from in-home entertainment to large-scale industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects similar to traditional computers, user expectations and deployment scenarios as well as cost and hardware constraints are sufficiently different to create new security challenges as well as new opportunities. This is especially true for large-scale IoT deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. Like traditional computers, IoT devices are subject to attack and compromise. Large IoT deployments consisting of many nearly identical devices are especially attractive targets. At the same time, recovery from root compromise by conventional means becomes costly and slow, even more so if the devices are dispersed over a large geographical area. In the worst case, technicians have to travel to all devices and manually recover them. Data center solutions such as the Intelligent Platform Management Interface (IPMI) which rely on separate service processors and network connections are not only not supported by existing IoT hardware, but are unlikely to be in the foreseeable future due to the cost constraints of mainstream IoT devices. This paper presents CIDER, a system that can recover IoT devices within a short amount of time, even if attackers have taken root control of every device in a large deployment. The recovery requires minimal manual intervention. After the administrator has identified the compromise and produced an updated firmware image, he/she can instruct CIDER to force the devices to reset and to install the patched firmware on the devices. We demonstrate the universality and practicality of CIDER by implementing it on three popular IoT platforms (HummingBoard Edge, Raspberry Pi Compute Module 3 and Nucleo-L476RG) spanning the range from high to low end. Our evaluation shows that the performance overhead of CIDER is generally negligible.
2020-11-09
Sengupta, A., Roy, D., Mohanty, S. P..  2019.  Low-Overhead Robust RTL Signature for DSP Core Protection: New Paradigm for Smart CE Design. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
The design process of smart Consumer Electronics (CE) devices heavily relies on reusable Intellectual Property (IP) cores of Digital Signal Processor (DSP) and Multimedia Processor (MP). On the other hand, due to strict competition and rivalry between IP vendors, the problem of ownership conflict and IP piracy is surging. Therefore, to design a secured smart CE device, protection of DSP/MP IP core is essential. Embedding a robust IP owner's signature can protect an IP core from ownership abuse and forgery. This paper presents a covert signature embedding process for DSP/MP IP core at Register-transfer level (RTL). The secret marks of the signature are distributed over the entire design such that it provides higher robustness. For example for 8th order FIR filter, it incurs only between 6% and 3% area overhead for maximum and minimum size signature respectively compared to the non-signature FIR RTL design but with significantly enhanced security.
2020-03-16
Chau, Cuong, Hunt, Warren A., Kaufmann, Matt, Roncken, Marly, Sutherland, Ivan.  2019.  A Hierarchical Approach to Self-Timed Circuit Verification. 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). :105–113.
Self-timed circuits can be modeled in a link-joint style using a formally defined hardware description language. It has previously been shown how functional properties of these models can be formally verified with the ACL2 theorem prover using a scalable, hierarchical method. Here we extend that method to parameterized circuit families that may have loops and non-deterministic outputs. We illustrate this extension with iterative self-timed circuits that calculate the greatest common divisor of two natural numbers, with circuits that perform arbitrated merges non-deterministically, and with circuits that combine both of these.
2020-02-26
Inaba, Koutaro, Yoneda, Tomohiro, Kanamoto, Toshiki, Kurokawa, Atsushi, Imai, Masashi.  2019.  Hardware Trojan Insertion and Detection in Asynchronous Circuits. 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). :134–143.

Hardware Trojan threats caused by malicious designers and untrusted manufacturers have become one of serious issues in modern VLSI systems. In this paper, we show some experimental results to insert hardware Trojans into asynchronous circuits. As a result, the overhead of hardware Trojan insertion in asynchronous circuits may be small for malicious designers who have enough knowledge about the asynchronous circuits. In addition, we also show several Trojan detection methods using deep learning schemes which have been proposed to detect synchronous hardware Trojan in the netlist level. We apply them to asynchronous hardware Trojan circuits and show their results. They have a great potential to detect a hardware Trojan in asynchronous circuits.

2018-06-20
Kebede, T. M., Djaneye-Boundjou, O., Narayanan, B. N., Ralescu, A., Kapp, D..  2017.  Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :70–75.

Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.

2018-02-02
Kochte, M. A., Baranowski, R., Wunderlich, H. J..  2017.  Trustworthy reconfigurable access to on-chip infrastructure. 2017 International Test Conference in Asia (ITC-Asia). :119–124.

The accessibility of on-chip embedded infrastructure for test, reconfiguration, or debug poses a serious security problem. Access mechanisms based on IEEE Std 1149.1 (JTAG), and especially reconfigurable scan networks (RSNs), as allowed by IEEE Std 1500, IEEE Std 1149.1-2013, and IEEE Std 1687 (IJTAG), require special care in the design and development. This work studies the threats to trustworthy data transmission in RSNs posed by untrusted components within the RSN and external interfaces. We propose a novel scan pattern generation method that finds trustworthy access sequences to prevent sniffing and spoofing of transmitted data in the RSN. For insecure RSNs, for which such accesses do not exist, we present an automated transformation that improves the security and trustworthiness while preserving the accessibility to attached instruments. The area overhead is reduced based on results from trustworthy access pattern generation. As a result, sensitive data is not exposed to untrusted components in the RSN, and compromised data cannot be injected during trustworthy accesses.

2015-05-06
Balkesen, C., Teubner, J., Alonso, G., Ozsu, M.T..  2014.  Main-Memory Hash Joins on Modern Processor Architectures. Knowledge and Data Engineering, IEEE Transactions on. PP:1-1.

Existing main-memory hash join algorithms for multi-core can be classified into two camps. Hardware-oblivious hash join variants do not depend on hardware-specific parameters. Rather, they consider qualitative characteristics of modern hardware and are expected to achieve good performance on any technologically similar platform. The assumption behind these algorithms is that hardware is now good enough at hiding its own limitations-through automatic hardware prefetching, out-of-order execution, or simultaneous multi-threading (SMT)-to make hardware-oblivious algorithms competitive without the overhead of carefully tuning to the underlying hardware. Hardware-conscious implementations, such as (parallel) radix join, aim to maximally exploit a given architecture by tuning the algorithm parameters (e.g., hash table sizes) to the particular features of the architecture. The assumption here is that explicit parameter tuning yields enough performance advantages to warrant the effort required. This paper compares the two approaches under a wide range of workloads (relative table sizes, tuple sizes, effects of sorted data, etc.) and configuration parameters (VM page sizes, number of threads, number of cores, SMT, SIMD, prefetching, etc.). The results show that hardware-conscious algorithms generally outperform hardware-oblivious ones. However, on specific workloads and special architectures with aggressive simultaneous multi-threading, hardware-oblivious algorithms are competitive. The main conclusion of the paper is that, in existing multi-core architectures, it is still important to carefully tailor algorithms to the underlying hardware to get the necessary performance. But processor developments may require to revisit this conclusion in the future.