Visible to the public Biblio

Filters: Keyword is TCAM  [Clear All Filters]
2019-08-05
Graves, Catherine E., Ma, Wen, Sheng, Xia, Buchanan, Brent, Zheng, Le, Lam, Si-Ty, Li, Xuema, Chalamalasetti, Sai Rahul, Kiyama, Lennie, Foltin, Martin et al..  2018.  Regular Expression Matching with Memristor TCAMs for Network Security. Proceedings of the 14th IEEE/ACM International Symposium on Nanoscale Architectures. :65–71.

We propose using memristor-based TCAMs (Ternary Content Addressable Memory) to accelerate Regular Expression (RegEx) matching. RegEx matching is a key function in network security, where deep packet inspection finds and filters out malicious actors. However, RegEx matching latency and power can be incredibly high and current proposals are challenged to perform wire-speed matching for large scale rulesets. Our approach dramatically decreases RegEx matching operating power, provides high throughput, and the use of mTCAMs enables novel compression techniques to expand ruleset sizes and allows future exploitation of the multi-state (analog) capabilities of memristors. We fabricated and demonstrated nanoscale memristor TCAM cells. SPICE simulations investigate mTCAM performance at scale and a mTCAM power model at 22nm demonstrates 0.2 fJ/bit/search energy for a 36x400 mTCAM. We further propose a tiled architecture which implements a Snort ruleset and assess the application performance. Compared to a state-of-the-art FPGA approach (2 Gbps,\textbackslashtextasciitilde1W), we show x4 throughput (8 Gbps) at 60% the power (0.62W) before applying standard TCAM power-saving techniques. Our performance comparison improves further when striding (searching multiple characters) is considered, resulting in 47.2 Gbps at 1.3W for our approach compared to 3.9 Gbps at 630mW for the strided FPGA NFA, demonstrating a promising path to wire-speed RegEx matching on large scale rulesets.

2017-08-02
Bremler-Barr, Anat, Harchol, Yotam, Hay, David, Hel-Or, Yacov.  2016.  Encoding Short Ranges in TCAM Without Expansion: Efficient Algorithm and Applications. Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. :35–46.

We present RENE –- a novel encoding scheme for short ranges on Ternary content addressable memory (TCAM), which, unlike previous solutions, does not impose row expansion, and uses bits proportionally to the maximal range length. We provide theoretical analysis to show that our encoding is the closest to the lower bound of number of bits used. In addition, we show several applications of our technique in the field of packet classification, and also, how the same technique could be used to efficiently solve other hard problems such as the nearest-neighbor search problem and its variants. We show that using TCAM, one could solve such problems in much higher rates than previously suggested solutions, and outperform known lower bounds in traditional memory models. We show by experiments that the translation process of RENE on switch hardware induces only a negligible 2.5% latency overhead. Our nearest neighbor implementation on a TCAM device provides search rates that are up to four orders of magnitude higher than previous best prior-art solutions.

2015-05-06
Yang Xu, Zhaobo Liu, Zhuoyuan Zhang, Chao, H.J..  2014.  High-Throughput and Memory-Efficient Multimatch Packet Classification Based on Distributed and Pipelined Hash Tables. Networking, IEEE/ACM Transactions on. 22:982-995.

The emergence of new network applications, such as the network intrusion detection system and packet-level accounting, requires packet classification to report all matched rules instead of only the best matched rule. Although several schemes have been proposed recently to address the multimatch packet classification problem, most of them require either huge memory or expensive ternary content addressable memory (TCAM) to store the intermediate data structure, or they suffer from steep performance degradation under certain types of classifiers. In this paper, we decompose the operation of multimatch packet classification from the complicated multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstage parallel access to hash tables. To exploit further intrastage parallelism, two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-conserving hash tables. To avoid collisions involved in hash table lookup, a hybrid perfect hash table construction scheme is proposed. Extensive simulation using realistic classifiers and traffic traces shows that the proposed pipeline architecture outperforms HyperCuts and B2PC schemes in classification speed by at least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 Gb/s using perfect hash tables.