Biblio
Ransomware techniques have evolved over time with the most resilient attacks making data recovery practically impossible. This has driven countermeasures to shift towards recovery against prevention but in this paper, we model ransomware attacks from an infection vector point of view. We follow the basic infection chain of crypto ransomware and use Bayesian network statistics to infer some of the most common ransomware infection vectors. We also employ the use of attack and sensor nodes to capture uncertainty in the Bayesian network.
Crypto-ransomware is a challenging threat that ciphers a user's files while hiding the decryption key until a ransom is paid by the victim. This type of malware is a lucrative business for cybercriminals, generating millions of dollars annually. The spread of ransomware is increasing as traditional detection-based protection, such as antivirus and anti-malware, has proven ineffective at preventing attacks. Additionally, this form of malware is incorporating advanced encryption algorithms and expanding the number of file types it targets. Cybercriminals have found a lucrative market and no one is safe from being the next victim. Encrypting ransomware targets business small and large as well as the regular home user. This paper discusses ransomware methods of infection, technology behind it and what can be done to help prevent becoming the next victim. The paper investigates the most common types of crypto-ransomware, various payload methods of infection, typical behavior of crypto ransomware, its tactics, how an attack is ordinarily carried out, what files are most commonly targeted on a victim's computer, and recommendations for prevention and safeguards are listed as well.
Ransomware, a class of self-propagating malware that uses encryption to hold the victims' data ransom, has emerged in recent years as one of the most dangerous cyber threats, with widespread damage; e.g., zero-day ransomware WannaCry has caused world-wide catastrophe, from knocking U.K. National Health Service hospitals offline to shutting down a Honda Motor Company in Japan [1]. Our close collaboration with security operations of large enterprises reveals that defense against ransomware relies on tedious analysis from high-volume systems logs of the first few infections. Sandbox analysis of freshly captured malware is also commonplace in operation. We introduce a method to identify and rank the most discriminating ransomware features from a set of ambient (non-attack) system logs and at least one log stream containing both ambient and ransomware behavior. These ranked features reveal a set of malware actions that are produced automatically from system logs, and can help automate tedious manual analysis. We test our approach using WannaCry and two polymorphic samples by producing logs with Cuckoo Sandbox during both ambient, and ambient plus ransomware executions. Our goal is to extract the features of the malware from the logs with only knowledge that malware was present. We compare outputs with a detailed analysis of WannaCry allowing validation of the algorithm's feature extraction and provide analysis of the method's robustness to variations of input data—changing quality/quantity of ambient data and testing polymorphic ransomware. Most notably, our patterns are accurate and unwavering when generated from polymorphic WannaCry copies, on which 63 (of 63 tested) antivirus (AV) products fail.
Ransomware attacks are becoming prevalent nowadays with the flourishing of crypto-currencies. As the most harmful variant of ransomware crypto-ransomware encrypts the victim's valuable data, and asks for ransom money. Paying the ransom money, however, may not guarantee recovery of the data being encrypted. Most of the existing work for ransomware defense purely focuses on ransomware detection. A few of them consider data recovery from ransomware attacks, but they are not able to defend against ransomware which can obtain a high system privilege. In this work, we design RDS3, a novel Ransomware Defense Strategy, in which we Stealthily back up data in the Spare space of a computing device, such that the data encrypted by ransomware can be restored. Our key idea is that the spare space which stores the backup data is fully isolated from the ransomware. In this way, the ransomware is not able to ``touch'' the backup data regardless of what privilege it can obtain. Security analysis and experimental evaluation show that RDS3 can mitigate ransomware attacks with an acceptable overhead.
The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.
The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.
Social media plays an integral part in individual's everyday lives as well as for companies. Social media brings numerous benefits in people's lives such as to keep in touch with close ones and specially with relatives who are overseas, to make new friends, buy products, share information and much more. Unfortunately, several threats also accompany the countless advantages of social media. The rapid growth of the online social networking sites provides more scope for criminals and cyber-criminals to carry out their illegal activities. Hackers have found different ways of exploiting these platform for their malicious gains. This research englobes some of the common threats on social media such as spam, malware, Trojan horse, cross-site scripting, industry espionage, cyber-bullying, cyber-stalking, social engineering attacks. The main purpose of the study to elaborates on phishing, malware and click-jacking attacks. The main purpose of the research, there is no particular research available on the forensic investigation for Facebook. There is no particular forensic investigation methodology and forensic tools available which can follow on the Facebook. There are several tools available to extract digital data but it's not properly tested for Facebook. Forensics investigation tool is used to extract evidence to determine what, when, where, who is responsible. This information is required to ensure that the sufficient evidence to take legal action against criminals.
Cyber attacks, (e.g., DDoS), on computers connected to the Internet occur everyday. A DDoS attack in 2016 that used “Mirai botnet” generated over 600 Gbit/s traffic, which was twice as that of last year. In view of this situation, we can no longer adequately protect our computers using current end-point security solutions and must therefore introduce a new method of protection that uses distributed nodes, e.g., routers. We propose an Autonomous and Distributed Internet Security (AIS) infrastructure that provides two key functions: first, filtering source address spoofing packets (proactive filter), and second, filtering malicious packets that are observed at the end point (reactive filter) at the closest malicious packets origins. We also propose three types of Multi-Layer Binding Routers (MLBRs) to realize these functions. We implemented the MLBRs and constructed experimental systems to simulate DDoS attacks. Results showed that all malicious packets could be filtered by using the AIS infrastructure.
Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.
Circular statistics present a new technique to analyse the time patterns of events in the field of cyber security. We apply this technique to analyse incidents of malware infections detected by network monitoring. In particular we are interested in the daily and weekly variations of these events. Based on "live" data provided by Spamhaus, we examine the hypothesis that attacks on four countries are distributed uniformly over 24 hours. Specifically, we use Rayleigh and Watson tests. While our results are mainly exploratory, we are able to demonstrate that the attacks are not uniformly distributed, nor do they follow a Poisson distribution as reported in other research. Our objective in this is to identify a distribution that can be used to establish risk metrics. Moreover, our approach provides a visual overview of the time patterns' variation, indicating when attacks are most likely. This will assist decision makers in cyber security to allocate resources or estimate the cost of system monitoring during high risk periods. Our results also reveal that the time patterns are influenced by the total number of attacks. Networks subject to a large volume of attacks exhibit bimodality while one case, where attacks were at relatively lower rate, showed a multi-modal daily variation.
Cloud computing presents unlimited prospects for Information Technology (IT) industry and business enterprises alike. Rapid advancement brings a dark underbelly of new vulnerabilities and challenges unfolding with alarming regularity. Although cloud technology provides a ubiquitous environment facilitating business enterprises to conduct business across disparate locations, security effectiveness of this platform interspersed with threats which can bring everything that subscribes to the cloud, to a halt raises questions. However advantages of cloud platforms far outweighs drawbacks and study of new challenges helps overcome drawbacks of this technology. One such emerging security threat is of ransomware attack on the cloud which threatens to hold systems and data on cloud network to ransom with widespread damaging implications. This provides huge scope for IT security specialists to sharpen their skillset to overcome this new challenge. This paper covers the broad cloud architecture, current inherent cloud threat mechanisms, ransomware vulnerabilities posed and suggested methods to mitigate it.
Performing large-scale malware classification is increasingly becoming a critical step in malware analytics as the number and variety of malware samples is rapidly growing. Statistical machine learning constitutes an appealing method to cope with this increase as it can use mathematical tools to extract information out of large-scale datasets and produce interpretable models. This has motivated a surge of scientific work in developing machine learning methods for detection and classification of malicious executables. However, an optimal method for extracting the most informative features for different malware families, with the final goal of malware classification, is yet to be found. Fortunately, neural networks have evolved to the state that they can surpass the limitations of other methods in terms of hierarchical feature extraction. Consequently, neural networks can now offer superior classification accuracy in many domains such as computer vision and natural language processing. In this paper, we transfer the performance improvements achieved in the area of neural networks to model the execution sequences of disassembled malicious binaries. We implement a neural network that consists of convolutional and feedforward neural constructs. This architecture embodies a hierarchical feature extraction approach that combines convolution of n-grams of instructions with plain vectorization of features derived from the headers of the Portable Executable (PE) files. Our evaluation results demonstrate that our approach outperforms baseline methods, such as simple Feedforward Neural Networks and Support Vector Machines, as we achieve 93% on precision and recall, even in case of obfuscations in the data.
As the malware threat landscape is constantly evolving and over one million new malware strains are being generated every day [1], early automatic detection of threats constitutes a top priority of cybersecurity research, and amplifies the need for more advanced detection and classification methods that are effective and efficient. In this paper, we present the application of machine learning algorithms to predict the length of time malware should be executed in a sandbox to reveal its malicious intent. We also introduce a novel hybrid approach to malware classification based on static binary analysis and dynamic analysis of malware. Static analysis extracts information from a binary file without executing it, and dynamic analysis captures the behavior of malware in a sandbox environment. Our experimental results show that by turning the aforementioned problems into machine learning problems, it is possible to get an accuracy of up to 90% on the prediction of the malware analysis run time and up to 92% on the classification of malware families.
Malware damages computers and the threat is a serious problem. Malware can be detected by pattern matching method or dynamic heuristic method. However, it is difficult to detect all new malware subspecies perfectly by existing methods. In this paper, we propose a new method which automatically detects new malware subspecies by static analysis of execution files and machine learning. The method can distinguish malware from benignware and it can also classify malware subspecies into malware families. We combine static analysis of execution files with machine learning classifier and natural language processing by machine learning. Information of DLL Import, assembly code and hexdump are acquired by static analysis of execution files of malware and benignware to create feature vectors. Paragraph vectors of information by static analysis of execution files are created by machine learning of PV-DBOW model for natural language processing. Support vector machine and classifier of k-nearest neighbor algorithm are used in our method, and the classifier learns paragraph vectors of information by static analysis. Unknown execution files are classified into malware or benignware by pre-learned SVM. Moreover, malware subspecies are also classified into malware families by pre-learned k-nearest. We evaluate the accuracy of the classification by experiments. We think that new malware subspecies can be effectively detected by our method without existing methods for malware analysis such as generic method and dynamic heuristic method.
As QR codes become ubiquitous, there is a prominent security threat of phishing and malware attacks that can be carried out by sharing rogue URLs through such codes. Several QR code scanner apps have become available in the past few years to combat such threats. Nevertheless, limited work exists in the literature evaluating such apps in the context of security. In this paper, we have investigated the status of existing secure QR code scanner apps for Android from a security point of view. We found that several of the so-called secure QR code scanner apps merely present the URL encoded in a QR code to the user rather than validating it against suitable threat databases. Further, many apps do not support basic security features such as displaying the URL to the user and asking for user confirmation before proceeding to open the URL in a browser. The most alarming issue that emerged during this study is that only two of the studied apps perform validation of the redirected URL associated with a QR code. We also tested the relevant apps with a set of benign, phishing and malware URLs collected from multiple sources. Overall, the results of our experiments imply that the protection offered by the examined secure QR code scanner apps against rogue URLs (especially malware URLs) is limited. Based on the findings of our investigation, we have distilled a set of key lessons and proposed design recommendations to enhance the security aspects of such apps.
Malware sandboxes, widely used by antivirus companies, mobile application marketplaces, threat detection appliances, and security researchers, face the challenge of environment-aware malware that alters its behavior once it detects that it is being executed on an analysis environment. Recent efforts attempt to deal with this problem mostly by ensuring that well-known properties of analysis environments are replaced with realistic values, and that any instrumentation artifacts remain hidden. For sandboxes implemented using virtual machines, this can be achieved by scrubbing vendor-specific drivers, processes, BIOS versions, and other VM-revealing indicators, while more sophisticated sandboxes move away from emulation-based and virtualization-based systems towards bare-metal hosts. We observe that as the fidelity and transparency of dynamic malware analysis systems improves, malware authors can resort to other system characteristics that are indicative of artificial environments. We present a novel class of sandbox evasion techniques that exploit the "wear and tear" that inevitably occurs on real systems as a result of normal use. By moving beyond how realistic a system looks like, to how realistic its past use looks like, malware can effectively evade even sandboxes that do not expose any instrumentation indicators, including bare-metal systems. We investigate the feasibility of this evasion strategy by conducting a large-scale study of wear-and-tear artifacts collected from real user devices and publicly available malware analysis services. The results of our evaluation are alarming: using simple decision trees derived from the analyzed data, malware can determine that a system is an artificial environment and not a real user device with an accuracy of 92.86%. As a step towards defending against wear-and-tear malware evasion, we develop statistical models that capture a system's age and degree of use, which can be used to aid sandbox operators in creating system i- ages that exhibit a realistic wear-and-tear state.
The wide-spreading mobile malware has become a dreadful issue in the increasingly popular mobile networks. Most of the mobile malware relies on network interface to coordinate operations, steal users' private information, and launch attack activities. In this paper, we propose TextDroid, an effective and automated malware detection method combining natural language processing and machine learning. TextDroid can extract distinguishable features (n-gram sequences) to characterize malware samples. A malware detection model is then developed to detect mobile malware using a Support Vector Machine (SVM) classifier. The trained SVM model presents a superior performance on two different data sets, with the malware detection rate reaching 96.36% in the test set and 76.99% in an app set captured in the wild, respectively. In addition, we also design a flow header visualization method to visualize the highlighted texts generated during the apps' network interactions, which assists security researchers in understanding the apps' complex network activities.
Advanced Persistent Threat (APT) attacks became a major network threat in recent years. Among APT attack techniques, sending a phishing email with malicious documents attached is considered one of the most effective ones. Although many users have the impression that documents are harmless, a malicious document may in fact contain shellcode to attack victims. To cope with the problem, we design and implement a malicious document detector called Forensor to differentiate malicious documents. Forensor integrates several open-source tools and methods. It first introspects file format to retrieve objects inside the documents, and then automatically decrypts simple encryption methods, e.g., XOR, rot and shift, commonly used in malware to discover potential shellcode. The emulator is used to verify the presence of shellcode. If shellcode is discovered, the file is considered malicious. The experiment used 9,000 benign files and more than 10,000 malware samples from a well-known sample sharing website. The result shows no false negative and only 2 false positives.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
This paper describes the various malware datasets that we have obtained permissions to host at the University of Arizona as part of a National Science Foundation funded project. It also describes some other malware datasets that we are in the process of obtaining permissions to host at the University of Arizona. We have also discussed some preliminary work we have carried out on malware analysis using big data platforms.
Internet of things (IoT) is internetworking of various physical devices to provide a range of services and applications. IoT is a rapidly growing field, on an account of this; the security measurements for IoT should be at first concern. In the modern day world, the most emerging cyber-attack threat for IoT is ransomware attack. Ransomware is a kind of malware with the aim of rendering a victim's computer unusable or inaccessible, and then asking the user to pay a ransom to revert the destruction. In this paper we are evaluating ransomware attacks statistics for the past 2 years and the present year to estimate growth rate of the most emerging ransomware families from the last 3 years to evaluate most threatening ransomware attacks for IoT. Growth rate results shows that the number of attacks for Cryptowall and locky ransomware are notably increasing therefore, these ransomware families are potential threat to IoT. Moreover, we present a Cryptowall ransomware attack detection model based on the communication and behavioral study of Cryptowall for IoT environment. The proposed model observes incoming TCP/IP traffic through web proxy server then extracts TCP/IP header and uses command and control (C&C) server black listing to detect ransomware attacks.
Understanding how to group a set of binary files into the piece of software they belong to is highly desirable for software profiling, malware detection, or enterprise audits, among many other applications. Unfortunately, it is also extremely challenging: there is absolutely no uniformity in the ways different applications rely on different files, in how binaries are signed, or in the versioning schemes used across different pieces of software. In this paper, we show that, by combining information gleaned from a large number of endpoints (millions of computers), we can accomplish large-scale application identification automatically and reliably. Our approach relies on collecting metadata on billions of files every day, summarizing it into much smaller "sketches", and performing approximate k-nearest neighbor clustering on non-metric space representations derived from these sketches. We design and implement our proposed system using Apache Spark, show that it can process billions of files in a matter of hours, and thus could be used for daily processing. We further show our system manages to successfully identify which files belong to which application with very high precision, and adequate recall.
The Internet of Things (IoT) revolution promises to make our lives easier by providing cheap and always connected smart embedded devices, which can interact on the Internet and create added values for human needs. But all that glitters is not gold. Indeed, the other side of the coin is that, from a security perspective, this IoT revolution represents a potential disaster. This plethora of IoT devices that flooded the market were very badly protected, thus an easy prey for several families of malwares that can enslave and incorporate them in very large botnets. This, eventually, brought back to the top Distributed Denial of Service (DDoS) attacks, making them more powerful and easier to achieve than ever. This paper aims at provide an up-to-date picture of DDoS attacks in the specific subject of the IoT, studying how these attacks work and considering the most common families in the IoT context, in terms of their nature and evolution through the years. It also explores the additional offensive capabilities that this arsenal of IoT malwares has available, to mine the security of Internet users and systems. We think that this up-to-date picture will be a valuable reference to the scientific community in order to take a first crucial step to tackle this urgent security issue.