Visible to the public Biblio

Filters: Keyword is dynamic analysis  [Clear All Filters]
2023-09-20
Haidros Rahima Manzil, Hashida, Naik S, Manohar.  2022.  DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—6.
Android malware is continuously evolving at an alarming rate due to the growing vulnerabilities. This demands more effective malware detection methods. This paper presents DynaMalDroid, a dynamic analysis-based framework to detect malicious applications in the Android platform. The proposed framework contains three modules: dynamic analysis, feature engineering, and detection. We utilized the well-known CICMalDroid2020 dataset, and the system calls of apps are extracted through dynamic analysis. We trained our proposed model to recognize malware by selecting features obtained through the feature engineering module. Further, with these selected features, the detection module applies different Machine Learning classifiers like Random Forest, Decision Tree, Logistic Regression, Support Vector Machine, Naïve-Bayes, K-Nearest Neighbour, and AdaBoost, to recognize whether an application is malicious or not. The experiments have shown that several classifiers have demonstrated excellent performance and have an accuracy of up to 99%. The models with Support Vector Machine and AdaBoost classifiers have provided better detection accuracy of 99.3% and 99.5%, respectively.
Khalil, Md Yusuf, Vivek, Anand, Kumar, Paul, Antarlina, Grover, Rahul.  2022.  PDF Malware Analysis. 2022 7th International Conference on Computing, Communication and Security (ICCCS). :1—4.
This document addresses the issue of the actual security level of PDF documents. Two types of detection approaches are utilized to detect dangerous elements within malware: static analysis and dynamic analysis. Analyzing malware binaries to identify dangerous strings, as well as reverse-engineering is included in static analysis for t1he malware to disassemble it. On the other hand, dynamic analysis monitors malware activities by running them in a safe environment, such as a virtual machine. Each method has its own set of strengths and weaknesses, and it is usually best to employ both methods while analyzing malware. Malware detection could be simplified without sacrificing accuracy by reducing the number of malicious traits. This may allow the researcher to devote more time to analysis. Our worry is that there is no obvious need to identify malware with numerous functionalities when it isn't necessary. We will solve this problem by developing a system that will identify if the given file is infected with malware or not.
2023-09-18
Amer, Eslam, Samir, Adham, Mostafa, Hazem, Mohamed, Amer, Amin, Mohamed.  2022.  Malware Detection Approach Based on the Swarm-Based Behavioural Analysis over API Calling Sequence. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :27—32.
The rapidly increasing malware threats must be coped with new effective malware detection methodologies. Current malware threats are not limited to daily personal transactions but dowelled deeply within large enterprises and organizations. This paper introduces a new methodology for detecting and discriminating malicious versus normal applications. In this paper, we employed Ant-colony optimization to generate two behavioural graphs that characterize the difference in the execution behavior between malware and normal applications. Our proposed approach relied on the API call sequence generated when an application is executed. We used the API calls as one of the most widely used malware dynamic analysis features. Our proposed method showed distinctive behavioral differences between malicious and non-malicious applications. Our experimental results showed a comparative performance compared to other machine learning methods. Therefore, we can employ our method as an efficient technique in capturing malicious applications.
2023-02-17
Wei, Lizhuo, Xu, Fengkai, Zhang, Ni, Yan, Wei, Chai, Chuchu.  2022.  Dynamic malicious code detection technology based on deep learning. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1–3.
In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.
2022-08-12
Andes, Neil, Wei, Mingkui.  2020.  District Ransomware: Static and Dynamic Analysis. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Ransomware is one of the fastest growing threats to internet security. New Ransomware attacks happen around the globe, on a weekly basis. These attacks happen to individual users and groups, from almost any type of business. Many of these attacks involve Ransomware as a service, where one attacker creates a template Malware, which can be purchased and modified by other attackers to perform specific actions. The District Ransomware was a less well-known strain. This work focuses on statically and dynamically analyzing the District Ransomware and presenting the results.
Chao, Wang, Qun, Li, XiaoHu, Wang, TianYu, Ren, JiaHan, Dong, GuangXin, Guo, EnJie, Shi.  2020.  An Android Application Vulnerability Mining Method Based On Static and Dynamic Analysis. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :599–603.
Due to the advantages and limitations of the two kinds of vulnerability mining methods of static and dynamic analysis of android applications, the paper proposes a method of Android application vulnerability mining based on dynamic and static combination. Firstly, the static analysis method is used to obtain the basic vulnerability analysis results of the application, and then the input test case of dynamic analysis is constructed on this basis. The fuzzy input test is carried out in the real machine environment, and the application security vulnerability is verified with the taint analysis technology, and finally the application vulnerability report is obtained. Experimental results show that compared with static analysis results, the method can significantly improve the accuracy of vulnerability mining.
2022-07-28
[Anonymous].  2021.  An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-05-19
Fursova, Natalia, Dovgalyuk, Pavel, Vasiliev, Ivan, Klimushenkova, Maria, Egorov, Danila.  2021.  Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
2022-05-12
Şengül, Özkan, Özkılıçaslan, Hasan, Arda, Emrecan, Yavanoğlu, Uraz, Dogru, Ibrahim Alper, Selçuk, Ali Aydın.  2021.  Implementing a Method for Docker Image Security. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :34–39.
Containers that can be easily created, transported and scaled with the use of container-based virtualization technologies work better than classical virtualization technologies and provide efficient resource usage. The Docker platform is one of the most widely used solutions among container-based virtualization technologies. The OS-level virtualization of the Docker platform and the container’s use of the host operating system kernel may cause security problems. In this study, a method including static and dynamic analysis has been proposed to ensure Docker image and container security. In the static analysis phase of the method, the packages of the images are scanned for vulnerabilities and malware. In the dynamic analysis phase, Docker containers are run for a certain period of time, after the open port scanning, network traffic is analyzed with the Snort3. Seven Docker images are analyzed and the results are shared.
2022-03-14
Ali, Ahtasham, Al-Perumal, Sundresan.  2021.  Source Code Analysis for Mobile Applications for Privacy Leaks. 2021 IEEE Madras Section Conference (MASCON). :1—6.
Intelligent gadgets for example smartphones, tablet phones, and personal digital assistants play an increasingly important part in our lives and have become indispensable in our everyday routines. As a result, the market for mobile apps tends to grow at a rapid rate, and mobile app utilization has long eclipsed that of desktop software. The applications based on these smartphones are becoming vulnerable due to the use of open-source operating systems in these smart devices. These applications are vulnerable to smartphones because of memory leaks; they can steal personal data, hack our smartphones, and monitor our private activity, giving anyone significant financial loss. Because of these issues, smartphone security plays a vital role in our daily lives. The Play Store contains unrated applications which any unprofessional developer can develop, and these applications do not pass through the rigorous process of testing and analysis of code leaks. The existing developed system does not include a stringent procedure to examine and investigate source code to detect such vulnerabilities among mobile applications. This paper presented a dynamic analysis-based robust system for Source Code Analysis of Mobile Applications for Privacy Leaks using a machine learning algorithm. Furthermore, our framework is called Source Code Analysis of Mobile Applications (SCA-MA), which combines DynaLog and our machine learning-based classifier for Source Code Analysis of Mobile Applications. Our dataset will contain around 20000 applications to test and analyze vulnerabilities. We will perform dynamic analysis and separate the classification of vulnerable applications and safe applications. Our results show that we can detect vulnerabilities through our proposed system while reviewing code and provide better results than other existing frameworks. We have evaluated our large dataset with the pervasive way so we can detect even small privacy leak which can harm our app. Finally, we have compared results with existing methods, and framework performance is better than other methods.
2022-01-31
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2021-09-21
Petrenko, Sergei A., Petrenko, Alexey S., Makoveichuk, Krystina A., Olifirov, Alexander V..  2020.  "Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
Vurdelja, Igor, Blažić, Ivan, Bojić, Dragan, Drašković, Dražen.  2020.  A framework for automated dynamic malware analysis for Linux. 2020 28th Telecommunications Forum (℡FOR). :1–4.
Development of malware protection tools requires a more advanced test environment comparing to safe software. This kind of development includes a safe execution of many malware samples in order to evaluate the protective power of the tool. The host machine needs to be protected from the harmful effects of malware samples and provide a realistic simulation of the execution environment. In this paper, a framework for automated malware analysis on Linux is presented. Different types of malware analysis methods are discussed, as well as the properties of a good framework for dynamic malware analysis.
Ramadhan, Beno, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2020.  Forensic Malware Identification Using Naive Bayes Method. 2020 International Conference on Information Technology Systems and Innovation (ICITSI). :1–7.
Malware is a kind of software that, if installed on a malware victim's device, might carry malicious actions. The malicious actions might be data theft, system failure, or denial of service. Malware analysis is a process to identify whether a piece of software is a malware or not. However, with the advancement of malware technologies, there are several evasion techniques that could be implemented by malware developers to prevent analysis, such as polymorphic and oligomorphic. Therefore, this research proposes an automatic malware detection system. In the system, the malware characteristics data were obtained through both static and dynamic analysis processes. Data from the analysis process were classified using Naive Bayes algorithm to identify whether the software is a malware or not. The process of identifying malware and benign files using the Naive Bayes machine learning method has an accuracy value of 93 percent for the detection process using static characteristics and 85 percent for detection through dynamic characteristics.
Walker, Aaron, Sengupta, Shamik.  2020.  Malware Family Fingerprinting Through Behavioral Analysis. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–5.
Signature-based malware detection is not always effective at detecting polymorphic variants of known malware. Malware signatures are devised to counter known threats, which also limits efficacy against new forms of malware. However, existing signatures do present the ability to classify malware based upon known malicious behavior which occurs on a victim computer. In this paper we present a method of classifying malware by family type through behavioral analysis, where the frequency of system function calls is used to fingerprint the actions of specific malware families. This in turn allows us to demonstrate a machine learning classifier which is capable of distinguishing malware by family affiliation with high accuracy.
2021-08-31
AlSabeh, Ali, Safa, Haidar, Bou-Harb, Elias, Crichigno, Jorge.  2020.  Exploiting Ransomware Paranoia For Execution Prevention. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Ransomware attacks cost businesses more than \$75 billion/year, and it is predicted to cost \$6 trillion/year by 2021. These numbers demonstrate the havoc produced by ransomware on a large number of sectors and urge security researches to tackle it. Several ransomware detection approaches have been proposed in the literature that interchange between static and dynamic analysis. Recently, ransomware attacks were shown to fingerprint the execution environment before they attack the system to counter dynamic analysis. In this paper, we exploit the behavior of contemporary ransomware to prevent its attack on real systems and thus avoid the loss of any data. We explore a set of ransomware-generated artifacts that are launched to sniff the surrounding. Furthermore, we design, develop, and evaluate an approach that monitors the behavior of a program by intercepting the called Windows APIs. Consequently, we determine in real-time if the program is trying to inspect its surrounding before the attack, and abort it immediately prior to the initiation of any malicious encryption or locking. Through empirical evaluations using real and recent ransomware samples, we study how ransomware and benign programs inspect the environment. Additionally, we demonstrate how to prevent ransomware with a low false positive rate. We make the developed approach available to the research community at large through GitHub to strongly promote cyber security defense operations and for wide-scale evaluations and enhancements.
2021-07-08
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
2021-03-15
Staicu, C.-A., Torp, M. T., Schäfer, M., Møller, A., Pradel, M..  2020.  Extracting Taint Specifications for JavaScript Libraries. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :198—209.

Modern JavaScript applications extensively depend on third-party libraries. Especially for the Node.js platform, vulnerabilities can have severe consequences to the security of applications, resulting in, e.g., cross-site scripting and command injection attacks. Existing static analysis tools that have been developed to automatically detect such issues are either too coarse-grained, looking only at package dependency structure while ignoring dataflow, or rely on manually written taint specifications for the most popular libraries to ensure analysis scalability. In this work, we propose a technique for automatically extracting taint specifications for JavaScript libraries, based on a dynamic analysis that leverages the existing test suites of the libraries and their available clients in the npm repository. Due to the dynamic nature of JavaScript, mapping observations from dynamic analysis to taint specifications that fit into a static analysis is non-trivial. Our main insight is that this challenge can be addressed by a combination of an access path mechanism that identifies entry and exit points, and the use of membranes around the libraries of interest. We show that our approach is effective at inferring useful taint specifications at scale. Our prototype tool automatically extracts 146 additional taint sinks and 7 840 propagation summaries spanning 1 393 npm modules. By integrating the extracted specifications into a commercial, state-of-the-art static analysis, 136 new alerts are produced, many of which correspond to likely security vulnerabilities. Moreover, many important specifications that were originally manually written are among the ones that our tool can now extract automatically.

2021-02-16
Wang, Y., Kjerstad, E., Belisario, B..  2020.  A Dynamic Analysis Security Testing Infrastructure for Internet of Things. 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1—6.
IoT devices such as Google Home and Amazon Echo provide great convenience to our lives. Many of these IoT devices collect data including Personal Identifiable Information such as names, phone numbers, and addresses and thus IoT security is important. However, conducting security analysis on IoT devices is challenging due to the variety, the volume of the devices, and the special skills required for hardware and software analysis. In this research, we create and demonstrate a dynamic analysis security testing infrastructure for capturing network traffic from IoT devices. The network traffic is automatically mirrored to a server for live traffic monitoring and offline data analysis. Using the dynamic analysis security testing infrastructure, we conduct extensive security analysis on network traffic from Google Home and Amazon Echo. Our testing results indicate that Google Home enforces tighter security controls than Amazon Echo while both Google and Amazon devices provide the desired security level to protect user data in general. The dynamic analysis security testing infrastructure presented in the paper can be utilized to conduct similar security analysis on any IoT devices.
2020-12-17
Sun, P., Garcia, L., Salles-Loustau, G., Zonouz, S..  2020.  Hybrid Firmware Analysis for Known Mobile and IoT Security Vulnerabilities. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :373—384.

Mobile and IoT operating systems–and their ensuing software updates–are usually distributed as binary files. Given that these binary files are commonly closed source, users or businesses who want to assess the security of the software need to rely on reverse engineering. Further, verifying the correct application of the latest software patches in a given binary is an open problem. The regular application of software patches is a central pillar for improving mobile and IoT device security. This requires developers, integrators, and vendors to propagate patches to all affected devices in a timely and coordinated fashion. In practice, vendors follow different and sometimes improper security update agendas for both mobile and IoT products. Moreover, previous studies revealed the existence of a hidden patch gap: several vendors falsely reported that they patched vulnerabilities. Therefore, techniques to verify whether vulnerabilities have been patched or not in a given binary are essential. Deep learning approaches have shown to be promising for static binary analyses with respect to inferring binary similarity as well as vulnerability detection. However, these approaches fail to capture the dynamic behavior of these systems, and, as a result, they may inundate the analysis with false positives when performing vulnerability discovery in the wild. In particular, they cannot capture the fine-grained characteristics necessary to distinguish whether a vulnerability has been patched or not. In this paper, we present PATCHECKO, a vulnerability and patch presence detection framework for executable binaries. PATCHECKO relies on a hybrid, cross-platform binary code similarity analysis that combines deep learning-based static binary analysis with dynamic binary analysis. PATCHECKO does not require access to the source code of the target binary nor that of vulnerable functions. We evaluate PATCHECKO on the most recent Google Pixel 2 smartphone and the Android Things IoT firmware images, within which 25 known CVE vulnerabilities have been previously reported and patched. Our deep learning model shows a vulnerability detection accuracy of over 93%. We further prune the candidates found by the deep learning stage–which includes false positives–via dynamic binary analysis. Consequently, PATCHECKO successfully identifies the correct matches among the candidate functions in the top 3 ranked outcomes 100% of the time. Furthermore, PATCHECKO's differential engine distinguishes between functions that are still vulnerable and those that are patched with an accuracy of 96%.

2020-11-17
Jaiswal, M., Malik, Y., Jaafar, F..  2018.  Android gaming malware detection using system call analysis. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1—5.
Android operating systems have become a prime target for attackers as most of the market is currently dominated by Android users. The situation gets worse when users unknowingly download or sideload cloning applications, especially gaming applications that look like benign games. In this paper, we present, a dynamic Android gaming malware detection system based on system call analysis to classify malicious and legitimate games. We performed the dynamic system call analysis on normal and malicious gaming applications while applications are in execution state. Our analysis reveals the similarities and differences between benign and malware game system calls and shows how dynamically analyzing the behavior of malicious activity through system calls during runtime makes it easier and is more effective to detect malicious applications. Experimental analysis and results shows the efficiency and effectiveness of our approach.
2020-10-26
Sethi, Kamalakanta, Kumar, Rahul, Sethi, Lingaraj, Bera, Padmalochan, Patra, Prashanta Kumar.  2019.  A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–4.
As time progresses, new and complex malware types are being generated which causes a serious threat to computer systems. Due to this drastic increase in the number of malware samples, the signature-based malware detection techniques cannot provide accurate results. Different studies have demonstrated the proficiency of machine learning for the detection and classification of malware files. Further, the accuracy of these machine learning models can be improved by using feature selection algorithms to select the most essential features and reducing the size of the dataset which leads to lesser computations. In this paper, we have developed a machine learning based malware analysis framework for efficient and accurate malware detection and classification. We used Cuckoo sandbox for dynamic analysis which executes malware in an isolated environment and generates an analysis report based on the system activities during execution. Further, we propose a feature extraction and selection module which extracts features from the report and selects the most important features for ensuring high accuracy at minimum computation cost. Then, we employ different machine learning algorithms for accurate detection and fine-grained classification. Experimental results show that we got high detection and classification accuracy in comparison to the state-of-the-art approaches.
Walker, Aaron, Sengupta, Shamik.  2019.  Insights into Malware Detection via Behavioral Frequency Analysis Using Machine Learning. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
The most common defenses against malware threats involves the use of signatures derived from instances of known malware. However, the constant evolution of the malware threat landscape necessitates defense against unknown malware, making a signature catalog of known threats insufficient to prevent zero-day vulnerabilities from being exploited. Recent research has applied machine learning approaches to identify malware through artifacts of malicious activity as observed through dynamic behavioral analysis. We have seen that these approaches mimic common malware defenses by simply offering a method of detecting known malware. We contribute a new method of identifying software as malicious or benign through analysis of the frequency of Windows API system function calls. We show that this is a powerful technique for malware detection because it generates learning models which understand the difference between malicious and benign software, rather than producing a malware signature classifier. We contribute a method of systematically comparing machine learning models against different datasets to determine their efficacy in accurately distinguishing the difference between malicious and benign software.
Chen, Cheng-Yu, Hsiao, Shun-Wen.  2019.  IoT Malware Dynamic Analysis Profiling System and Family Behavior Analysis. 2019 IEEE International Conference on Big Data (Big Data). :6013–6015.
Not only the number of deployed IoT devices increases but also that of IoT malware increases. We eager to understand the threat made by IoT malware but we lack tools to observe, analyze and detect them. We design and implement an automatic, virtual machine-based profiling system to collect valuable IoT malware behavior, such as API call invocation, system call execution, etc. In addition to conventional profiling methods (e.g., strace and packet capture), the proposed profiling system adapts virtual machine introspection based API hooking technique to intercept API call invocation by malware, so that our introspection would not be detected by IoT malware. We then propose a method to convert the multiple sequential data (API calls) to a family behavior graph for further analysis.