Visible to the public Biblio

Filters: Keyword is image authentication  [Clear All Filters]
2021-08-31
Freitas, Lucas F., Nogueira, Adalberto R., Melgar, Max E. Vizcarra.  2020.  Visual Authentication Scheme Based on Reversible Degradation and QR Code. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :58—63.
Two-Dimensional barcodes are used as data authentication storage tool on several cryptographic architectures. This article describes a novel meaningful image authentication method for data validation using the Meaningless Reversible Degradation concept and QR Codes. The system architecture use the Meaningless Reversible Degradation algorithm, systematic Reed-Solomon error correction codes, meaningful images, and QR Codes. The encoded images are the secret key for visual validation. The proposed work encodes any secret image file up to 3.892 Bytes and is decoded using data stored in a QR Code and a digital file retrieved through a wireless connection on a mobile device. The QR Code carries partially distorted and stream ciphered bits. The QR Code version is defined in conformity with the secret image file size. Once the QR Code data is decoded, the authenticating party retrieves a previous created Reed-Solomon redundancy file to correct the QR Code stored data. Finally, the secret image is decoded for user visual identification. A regular QR Code reader cannot decode any meaningful information when the QR Code is scanned. The presented cryptosystem improves the redundancy download file size up to 50% compared to a plaintext image transmission.
2020-12-15
Kaur, S., Jindal, A..  2020.  Singular Value Decomposition (SVD) based Image Tamper Detection Scheme. 2020 International Conference on Inventive Computation Technologies (ICICT). :695—699.
Image authentication techniques are basically used to check whether the received document is accurate or actual as it was transmitted by the source node or not. Image authentication ensures the integrity of the digital images and identify the ownership of the copyright of the digital images. Singular Value Decomposition (SVD) is method based on spatial domain which is used to extract important features from an image. SVD function decomposes an image into three matrices (U, S, V), the S matrix is a diagonal matrix constitutes singular values. These values are important features of that particular image. The quick response code features are utilized to create QR code from the extracted values. The evaluations produced represents that this designed method is better in producing authenticated image as compared to existing schemes.
2018-11-19
Gharsallaoui, R., Hamdi, M., Kim, T..  2017.  A Novel Privacy Technique for Augmented Reality Cloud Gaming Based on Image Authentication. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :252–257.

The evolution of cloud gaming systems is substantially the security requirements for computer games. Although online game development often utilizes artificial intelligence and human computer interaction, game developers and providers often do not pay much attention to security techniques. In cloud gaming, location-based games are augmented reality games which take the original principals of the game and applies them to the real world. In other terms, it uses the real world to impact the game experience. Because the execution of such games is distributed in cloud computing, users cannot be certain where their input and output data are managed. This introduces the possibility to input incorrect data in the exchange between the gamer's terminal and the gaming platform. In this context, we propose a new gaming concept for augmented reality and location-based games in order to solve the aforementioned cheating scenario problem. The merit of our approach is to establish an accurate and verifiable proof that the gamer reached the goal or found the target. The major novelty in our method is that it allows the gamer to submit an authenticated proof related to the game result without altering the privacy of positioning data.

2017-05-22
Ghadi, Musab, Laouamer, Lamri, Nana, Laurent, Pascu, Anca.  2016.  A Robust Associative Watermarking Technique Based on Frequent Pattern Mining and Texture Analysis. Proceedings of the 8th International Conference on Management of Digital EcoSystems. :73–81.

Nowadays, the principle of image mining plays a vital role in various areas of our life, where numerous frameworks based on image mining are proposed for object recognition, object tracking, sensing images and medical image diagnosis. Nevertheless, the research in the image authentication based on image mining is still confined. Therefore, this paper comes to present an efficient engagement between the frequent pattern mining and digital watermarking to contribute significantly in the authentication of images transmitted via public networks. The proposed framework exploits some robust features of image to extract the frequent patterns in the image data. The maximal relevant patterns are used to discriminate between the textured and smooth blocks within the image, where the texture blocks are more appropriate to embed the secret data than smooth blocks. The experiment's result proves the efficiency of the proposed framework in terms of stabilization and robustness against different kind of attacks. The results are interesting and remarkable to preserve the image authentication.

2015-05-06
Plesca, C., Morogan, L..  2014.  Efficient and robust perceptual hashing using log-polar image representation. Communications (COMM), 2014 10th International Conference on. :1-6.

Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These hashes find extensive applications in content authentication, image indexing for database search and watermarking. Modern robust hashing algorithms consist of feature extraction, a randomization stage to introduce non-invertibility, followed by quantization and binary encoding to produce a binary hash. This paper describes a novel algorithm for generating an image hash based on Log-Polar transform features. The Log-Polar transform is a part of the Fourier-Mellin transformation, often used in image recognition and registration techniques due to its invariant properties to geometric operations. First, we show that the proposed perceptual hash is resistant to content-preserving operations like compression, noise addition, moderate geometric and filtering. Second, we illustrate the discriminative capability of our hash in order to rapidly distinguish between two perceptually different images. Third, we study the security of our method for image authentication purposes. Finally, we show that the proposed hashing method can provide both excellent security and robustness.