Visible to the public Biblio

Filters: Keyword is radio links  [Clear All Filters]
2020-12-28
Khatod, V., Manolova, A..  2020.  Effects of Man in the Middle (MITM) Attack on Bit Error Rate of Bluetooth System. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT NCON). :153—157.
The ad-hoc network formed by Bluetooth works on radio frequency links. The security aspect of Bluetooth has to be handled more carefully. The radio frequency waves have a characteristic that the waves can pierce the obstructions in the communication path, get rid of the requirement of line of sight between the communicating devices. We propose a software model of man-in-the-middle attack along with unauthorized and authorized transmitter and receiver. Advanced White Gaussian Noise channel is simulated in the designed architecture. The transmitter uses Gaussian Frequency Shift Keying (GFSK) modulation like in Bluetooth. The receiver uses GFSK demodulation. In order to validate the performance of the designed system, bit error rate (BER) measurements are taken with respect to different time intervals. We found that BER drops roughly 18% if hopping duration of 150 seconds is chosen. We propose that a Bluetooth system with hopping rate of 0.006 Hz is used instead of 10Hz.
2020-12-21
Karthiga, K., Balamurugan, G., Subashri, T..  2020.  Computational Analysis of Security Algorithm on 6LowPSec. 2020 International Conference on Communication and Signal Processing (ICCSP). :1437–1442.
In order to the development of IoT, IETF developed a standard named 6LoWPAN for increase the usage of IPv6 to the tiny and smart objects with low power. Generally, the 6LoWPAN radio link needs end to end (e2e) security for its IPv6 communication process. 6LoWPAN requires light weight variant of security solutions in IPSec. A new security approach of 6LoWPAN at adaptation layer to provide e2e security with light weight IPSec. The existing security protocol IPsec is not suitable for its 6LoWPAN IoT environment because it has heavy restrictions on memory, power, duty cycle, additional overhead transmission. The IPSec had packet overhead problem due to share the secret key between two communicating peers by IKE (Internet Key Exchange) protocol. Hence the existing security protocol IPSec solutions are not suitable for lightweight-based security need in 6LoWPAN IoT. This paper describes 6LowPSec protocol with AES-CCM (Cipher block chaining Message authentication code with Counter mode) cryptographic algorithm with key size of 128 bits with minimum power consumption and duty cycle.
2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

2019-03-25
Son, W., Jung, B. C., Kim, C., Kim, J. M..  2018.  Pseudo-Random Beamforming with Beam Selection for Improving Physical-Layer Security. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :382–384.
In this paper, we propose a novel pseudo-random beamforming technique with beam selection for improving physical-layer security (PLS) in a downlink cellular network where consists of a base station (BS) with Ntantennas, NMSlegitimate mobile stations (MSs), and NEeavesdroppers. In the proposed technique, the BS generates multiple candidates of beamforming matrix each of which consists of orthogonal beamforming vectors in a pseudo-random manner. Each legitimate MS opportunistically feeds back the received signal-to-interference-and-noise ratio (SINR) value for all beamforming vectors to the BS. The BS transmits data to the legitimate MSs with the optimal beamforming matrix among multiple beam forming matrices that maximizes the secrecy sum-rate. Simulation results show that the proposed technique outperforms the conventional random beamforming technique in terms of the achievable secrecy sum-rate.
2018-10-26
Zhang, Zechen, Peng, Wei, Liu, Song.  2017.  A secure and reliable coding scheme over wireless links in cyber-physical systems. 2017 IEEE International Conference on Communications Workshops (ICC Workshops). :1079–1085.

Cyber-physical systems connect the physical world and the information world by sensors and actuators. These sensors are usually small embedded systems which have many limitations on wireless communication, computing and storage. This paper proposes a lightweight coding method for secure and reliable transmission over a wireless communication links in cyber-physical systems. The reliability of transmission is provided by forward error correction. And to ensure the confidentiality, we utilize different encryption matrices at each time of coding which are generated by the sequence number of packets. So replay attacks and other cyber threats can be resisted simultaneously. The issues of the prior reliable transmission protocols and secure communication protocols in wireless networks of a cyber-physical system are reduced, such as large protocol overhead, high interaction delay and large computation cost.

2018-06-20
Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

2018-03-05
Messai, M. L., Seba, H..  2017.  A Self-Healing Key Pre-Distribution Scheme for Multi-Phase Wireless Sensor Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :144–151.

Node compromising is still the most hard attack in Wireless Sensor Networks (WSNs). It affects key distribution which is a building block in securing communications in any network. The weak point of several roposed key distribution schemes in WSNs is their lack of resilience to node compromising attacks. When a node is compromised, all its key material is revealed leading to insecure communication links throughout the network. This drawback is more harmful for long-lived WSNs that are deployed in multiple phases, i.e., Multi-phase WSNs (MPWSNs). In the last few years, many key management schemes were proposed to ensure security in WSNs. However, these schemes are conceived for single phase WSNs and their security degrades with time when an attacker captures nodes. To deal with this drawback and enhance the resilience to node compromising over the whole lifetime of the network, we propose in this paper, a new key pre-distribution scheme adapted to MPWSNs. Our scheme takes advantage of the resilience improvement of Q-composite key scheme and adds self-healing which is the ability of the scheme to decrease the effect of node compromising over time. Self-healing is achieved by pre-distributing each generation with fresh keys. The evaluation of our scheme proves that it has a good key connectivity and a high resilience to node compromising attack compared to existing key management schemes.

2015-05-06
Ahmad, A., Hassan, M.M., Aziz, A..  2014.  A Multi-token Authorization Strategy for Secure Mobile Cloud Computing. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International Conference on. :136-141.

Cloud computing is an emerging paradigm shifting the shape of computing models from being a technology to a utility. However, security, privacy and trust are amongst the issues that can subvert the benefits and hence wide deployment of cloud computing. With the introduction of omnipresent mobile-based clients, the ubiquity of the model increases, suggesting a still higher integration in life. Nonetheless, the security issues rise to a higher degree as well. The constrained input methods for credentials and the vulnerable wireless communication links are among factors giving rise to serious security issues. To strengthen the access control of cloud resources, organizations now commonly acquire Identity Management Systems (IdM). This paper presents that the most popular IdM, namely OAuth, working in scope of Mobile Cloud Computing has many weaknesses in authorization architecture. In particular, authors find two major issues in current IdM. First, if the IdM System is compromised through malicious code, it allows a hacker to get authorization of all the protected resources hosted on a cloud. Second, all the communication links among client, cloud and IdM carries complete authorization token, that can allow hacker, through traffic interception at any communication link, an illegitimate access of protected resources. We also suggest a solution to the reported problems, and justify our arguments with experimentation and mathematical modeling.