Visible to the public Biblio

Filters: Keyword is biometric identification  [Clear All Filters]
2023-03-31
Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

2020-08-28
Pradhan, Chittaranjan, Banerjee, Debanjan, Nandy, Nabarun, Biswas, Udita.  2019.  Generating Digital Signature using Facial Landmlark Detection. 2019 International Conference on Communication and Signal Processing (ICCSP). :0180—0184.
Information security has developed rapidly over the recent years with a key being the emergence of social media. To standardize this discipline, security of an individual becomes an urgent concern. In 2019, it is estimated that there will be over 2.5 billion social media users around the globe. Unfortunately, anonymous identity has become a major concern for the security advisors. Due to the technological advancements, the phishers are able to access the confidential information. To resolve these issues numerous solutions have been proposed, such as biometric identification, facial and audio recognition etc prior access to any highly secure forum on the web. Generating digital signatures is the recent trend being incorporated in the field of digital security. We have designed an algorithm that after generating 68 point facial landmark, converts the image to a highly compressed and secure digital signature. The proposed algorithm generates a unique signature for an individual which when stored in the user account information database will limit the creation of fake or multiple accounts. At the same time the algorithm reduces the database storage overhead as it stores the facial identity of an individual in the form of a compressed textual signature rather than the traditional method where the image file was being stored, occupying lesser amount of space and making it more efficient in terms of searching, fetching and manipulation. A unique new analysis of the features produced at intermediate layers has been applied. Here, we opt to use the normal and two opposites' angular measures of the triangle as the invariance. It simply acts as the real-time optimized encryption procedure to achieve the reliable security goals explained in detail in the later sections.
2015-05-06
Ching-Kun Chen, Chun-Liang Lin, Shyan-Lung Lin, Yen-Ming Chiu, Cheng-Tang Chiang.  2014.  A Chaotic Theorectical Approach to ECG-Based Identity Recognition [Application Notes]. Computational Intelligence Magazine, IEEE. 9:53-63.

Sophisticated technologies realized from applying the idea of biometric identification are increasingly applied in the entrance security management system, private document protection, and security access control. Common biometric identification involves voice, attitude, keystroke, signature, iris, face, palm or finger prints, etc. Still, there are novel identification technologies based on the individual's biometric features under development [1-4].