Biblio
The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.
Using heterogeneous clouds has been considered to improve performance of big-data analytics for healthcare platforms. However, the problem of the delay when transferring big-data over the network needs to be addressed. The purpose of this paper is to analyze and compare existing cloud computing environments (PaaS, IaaS) in order to implement middleware services. Understanding the differences and similarities between cloud technologies will help in the interconnection of healthcare platforms. The paper provides a general overview of the techniques and interfaces for cloud computing middleware services, and proposes a cloud architecture for healthcare. Cloud middleware enables heterogeneous devices to act as data sources and to integrate data from other healthcare platforms, but specific APIs need to be developed. Furthermore, security and management problems need to be addressed, given the heterogeneous nature of the communication and computing environment. The present paper fills a gap in the electronic healthcare register literature by providing an overview of cloud computing middleware services and standardized interfaces for the integration with medical devices.
Cloud technologies are increasingly important for IT department for allowing them to concentrate on strategy as opposed to maintaining data centers; the biggest advantages of the cloud is the ability to share computing resources between multiple providers, especially hybrid clouds, in overcoming infrastructure limitations. User identity federation is considered as the second major risk in the cloud, and since business organizations use multiple cloud service providers, IT department faces a range of constraints. Multiple attempts to solve this problem have been suggested like federated Identity, which has a number of advantages, despite it suffering from challenges that are common in new technologies. The following paper tackles federated identity, its components, advantages, disadvantages, and then proposes a number of useful scenarios to manage identity in hybrid clouds infrastructure.