Biblio
Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.
The Agave Platform first appeared in 2011 as a pilot project for the iPlant Collaborative [11]. In its first two years, Foundation saw over 40% growth per month, supporting 1000+ clients, 600+ applications, 4 HPC systems at 3 centers across the US. It also gained users outside of plant biology. To better serve the needs of the general open science community, we rewrote Foundation as a scalable, cloud native application and named it the Agave Platform. In this paper we present the Agave Platform, a Science-as-a-Service (ScaaS) platform for reproducible science. We provide a brief history and technical overview of the project, and highlight three case studies leveraging the platform to create synergistic value for their users.
The storage and management of secrets (encryption keys, passwords, etc) are significant open problems in the age of ephemeral, cloud-based computing infrastructure. How do we store and control access to the secrets necessary to configure and operate a range of modern technologies without sacrificing security and privacy requirements or significantly curtailing the desirable capabilities of our systems? To answer this question, we propose Tutamen: a next-generation secret-storage service. Tutamen offers a number of desirable properties not present in existing secret-storage solutions. These include the ability to operate across administrative domain boundaries and atop minimally trusted infrastructure. Tutamen also supports access control based on contextual, multi-factor, and alternate-band authentication parameters. These properties have allowed us to leverage Tutamen to support a variety of use cases not easily realizable using existing systems, including supporting full-disk encryption on headless servers and providing fully-featured client-side encryption for cloud-based file-storage services. In this paper, we present an overview of the secret-storage challenge, Tutamen's design and architecture, the implementation of our Tutamen prototype, and several of the applications we have built atop Tutamen. We conclude that Tutamen effectively eases the secret-storage burden and allows developers and systems administrators to achieve previously unattainable security-oriented goals while still supporting a wide range of feature-oriented requirements.
Cloud technologies are increasingly important for IT department for allowing them to concentrate on strategy as opposed to maintaining data centers; the biggest advantages of the cloud is the ability to share computing resources between multiple providers, especially hybrid clouds, in overcoming infrastructure limitations. User identity federation is considered as the second major risk in the cloud, and since business organizations use multiple cloud service providers, IT department faces a range of constraints. Multiple attempts to solve this problem have been suggested like federated Identity, which has a number of advantages, despite it suffering from challenges that are common in new technologies. The following paper tackles federated identity, its components, advantages, disadvantages, and then proposes a number of useful scenarios to manage identity in hybrid clouds infrastructure.