Biblio
Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.
In this paper, we propose a new color image encryption and compression algorithm based on the DNA complementary rule and the Chinese remainder theorem, which combines the DNA complementary rule with quantum chaotic map. We use quantum chaotic map and DNA complementary rule to shuffle the color image and obtain the shuffled image, then Chinese remainder theorem from number theory is utilized to diffuse and compress the shuffled image simultaneously. The security analysis and experiment results show that the proposed encryption algorithm has large key space and good encryption result, it also can resist against common attacks.
Designing a centralised group key management with minimal computation complexity to support dynamic secure multicast communication is a challenging issue in secure multimedia multicast. In this study, the authors propose a Chinese remainder theorem-based group key management scheme that drastically reduces computation complexity of the key server. The computation complexity of key server is reduced to O(1) in this proposed algorithm. Moreover, the computation complexity of group member is also minimised by performing one modulo division operation when a user join or leave operation is performed in a multicast group. The proposed algorithm has been implemented and tested using a key-star-based key management scheme and has been observed that this proposed algorithm reduces the computation complexity significantly.