Visible to the public Biblio

Filters: Keyword is cache  [Clear All Filters]
2022-01-31
Squarcina, Marco, Calzavara, Stefano, Maffei, Matteo.  2021.  The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches. 2021 IEEE Security and Privacy Workshops (SPW). :432—443.
Service workers boost the user experience of modern web applications by taking advantage of the Cache API to improve responsiveness and support offline usage. In this paper, we present the first security analysis of the threats posed by this programming practice, identifying an attack with major security implications. In particular, we show how a traditional XSS attack can abuse the Cache API to escalate into a personin-the-middle attack against cached content, thus compromising its confidentiality and integrity. Remarkably, this attack enables new threats which are beyond the scope of traditional XSS. After defining the attack, we study its prevalence in the wild, finding that the large majority of the sites which register service workers using the Cache API are vulnerable as long as a single webpage in the same origin of the service worker is affected by an XSS. Finally, we propose a browser-side countermeasure against this attack, and we analyze its effectiveness and practicality in terms of security benefits and backward compatibility with existing web applications.
Squarcina, Marco, Calzavara, Stefano, Maffei, Matteo.  2021.  The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches. 2021 IEEE Security and Privacy Workshops (SPW). :432—443.
Service workers boost the user experience of modern web applications by taking advantage of the Cache API to improve responsiveness and support offline usage. In this paper, we present the first security analysis of the threats posed by this programming practice, identifying an attack with major security implications. In particular, we show how a traditional XSS attack can abuse the Cache API to escalate into a personin-the-middle attack against cached content, thus compromising its confidentiality and integrity. Remarkably, this attack enables new threats which are beyond the scope of traditional XSS. After defining the attack, we study its prevalence in the wild, finding that the large majority of the sites which register service workers using the Cache API are vulnerable as long as a single webpage in the same origin of the service worker is affected by an XSS. Finally, we propose a browser-side countermeasure against this attack, and we analyze its effectiveness and practicality in terms of security benefits and backward compatibility with existing web applications.
2020-05-26
Chatterjee, Tanusree, Ruj, Sushmita, Bit, Sipra Das.  2018.  Security Issues in Named Data Networks. Computer. 51:66–75.
Today's IP and content distribution networks are unable to fulfill all data distribution and security requirements. The named data network (NDN) has emerged as a promising candidate to cope with the Internet usage of the 21st century. Although the NDN has many built-in security features, this survey reviews several pressing security issues and open research areas.
2019-12-17
Guo, Shengjian, Wu, Meng, Wang, Chao.  2018.  Adversarial Symbolic Execution for Detecting Concurrency-Related Cache Timing Leaks. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :377-388.
The timing characteristics of cache, a high-speed storage between the fast CPU and the slow memory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks either ignore cache all together or focus only on passive leaks generated by the program itself, without considering leaks that are made possible by concurrently running some other threads. In this work, we show that timing-leak-freedom is not a compositional property: a program that is not leaky when running alone may become leaky when interleaved with other threads. Thus, we develop a new method, named adversarial symbolic execution, to detect such leaks. It systematically explores both the feasible program paths and their interleavings while modeling the cache, and leverages an SMT solver to decide if there are timing leaks. We have implemented our method in LLVM and evaluated it on a set of real-world ciphers with 14,455 lines of C code in total. Our experiments demonstrate both the efficiency of our method and its effectiveness in detecting side-channel leaks.
2018-02-21
Yan, Mengjia, Gopireddy, Bhargava, Shull, Thomas, Torrellas, Josep.  2017.  Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against Cache-Based Side Channel Atacks. Proceedings of the 44th Annual International Symposium on Computer Architecture. :347–360.
In cache-based side channel attacks, a spy that shares a cache with a victim probes cache locations to extract information on the victim's access patterns. For example, in evict+reload, the spy repeatedly evicts and then reloads a probe address, checking if the victim has accessed the address in between the two operations. While there are many proposals to combat these cache attacks, they all have limitations: they either hurt performance, require programmer intervention, or can only defend against some types of attacks. This paper makes the following observation for an environment with an inclusive cache hierarchy: when the spy evicts the probe address from the shared cache, the address will also be evicted from the private cache of the victim process, creating an inclusion victim. Consequently, to disable cache attacks, this paper proposes to alter the line replacement algorithm of the shared cache, to prevent a process from creating inclusion victims in the caches of cores running other processes. By enforcing this rule, the spy cannot evict the probe address from the shared cache and, hence, cannot glimpse any information on the victim's access patterns. We call our proposal SHARP (Secure Hierarchy-Aware cache Replacement Policy). SHARP efficiently defends against all existing cross-core shared-cache attacks, needs only minimal hardware modifications, and requires no code modifications. We implement SHARP in a cycle-level full-system simulator. We show that it protects against real-world attacks, and that it introduces negligible average performance degradation.
2015-05-06
Khanuja, H., Suratkar, S.S..  2014.  #x201C;Role of metadata in forensic analysis of database attacks #x201C;. Advance Computing Conference (IACC), 2014 IEEE International. :457-462.

With the spectacular increase in online activities like e-transactions, security and privacy issues are at the peak with respect to their significance. Large numbers of database security breaches are occurring at a very high rate on daily basis. So, there is a crucial need in the field of database forensics to make several redundant copies of sensitive data found in database server artifacts, audit logs, cache, table storage etc. for analysis purposes. Large volume of metadata is available in database infrastructure for investigation purposes but most of the effort lies in the retrieval and analysis of that information from computing systems. Thus, in this paper we mainly focus on the significance of metadata in database forensics. We proposed a system here to perform forensics analysis of database by generating its metadata file independent of the DBMS system used. We also aim to generate the digital evidence against criminals for presenting it in the court of law in the form of who, when, why, what, how and where did the fraudulent transaction occur. Thus, we are presenting a system to detect major database attacks as well as anti-forensics attacks by developing an open source database forensics tool. Eventually, we are pointing out the challenges in the field of forensics and how these challenges can be used as opportunities to stimulate the areas of database forensics.