Biblio
Filters: Keyword is telecommunication traffic [Clear All Filters]
Enabling Device Trustworthiness for SDN-Enabled Internet -of- Battlefield Things. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—7.
.
2022. Military networks consist of heterogeneous devices that provide soldiers with real-time terrain and mission intel-ligence. The development of next-generation Software Defined Networks (SDN)-enabled devices is enabling the modernization of traditional military networks. Commonly, traditional military networks take the trustworthiness of devices for granted. How-ever, the recent modernization of military networks introduces cyber attacks such as data and identity spoofing attacks. Hence, it is crucial to ensure the trustworthiness of network traffic to ensure the mission's outcome. This work proposes a Continuous Behavior-based Authentication (CBA) protocol that integrates network traffic analysis techniques to provide robust and efficient network management flow by separating data and control planes in SDN-enabled military networks. The evaluation of the CBA protocol aimed to measure the efficiency of the proposed protocol in realistic military networks. Furthermore, we analyze the overall network overhead of the CBA protocol and its accuracy to detect rogue network traffic data from field devices.
A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
.
2022. Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
An End-to-End System for Monitoring IoT Devices in Smart Homes. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :929–930.
.
2022. The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:367–383.
.
2022. Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
ISSN: 2325-5374
NBP-MS: Malware Signature Generation Based on Network Behavior Profiling. 2022 26th International Conference on Pattern Recognition (ICPR). :1865–1870.
.
2022. With the proliferation of malware, the detection and classification of malware have been hot topics in the academic and industrial circles of cyber security, and the generation of malware signatures is one of the important research directions. In this paper, we propose NBP-MS, a method of signature generation that is based on network traffic generated by malware. Specifically, we utilize the network traffic generated by malware to perform fine-grained profiling of its network behaviors first, and then cluster all the profiles to generate network behavior signatures to classify malware, providing support for subsequent analysis and defense.
Security Automation using Traffic Flow Modeling. 2022 IEEE 8th International Conference on Network Softwarization (NetSoft). :486–491.
.
2022. he growing trend towards network “softwarization” allows the creation and deployment of even complex network environments in a few minutes or seconds, rather than days or weeks as required by traditional methods. This revolutionary approach made it necessary to seek automatic processes to solve network security problems. One of the main issues in the automation of network security concerns the proper and efficient modeling of network traffic. In this paper, we describe two optimized Traffic Flows representation models, called Atomic Flows and Maximal Flows. In addition to the description, we have validated and evaluated the proposed models to solve two key network security problems - security verification and automatic configuration - showing the advantages and limitations of each solution.
Systematic review of automatic translation of high-level security policy into firewall rules. 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO). :1063–1068.
.
2022. Firewalls are security devices that perform network traffic filtering. They are ubiquitous in the industry and are a common method used to enforce organizational security policy. Security policy is specified on a high level of abstraction, with statements such as "web browsing is allowed only on workstations inside the office network", and needs to be translated into low-level firewall rules to be enforceable. There has been a lot of work regarding optimization, analysis and platform independence of firewall rules, but an area that has seen much less success is automatic translation of high-level security policies into firewall rules. In addition to improving rules’ readability, such translation would make it easier to detect errors.This paper surveys of over twenty papers that aim to generate firewall rules according to a security policy specified on a higher level of abstraction. It also presents an overview of similar features in modern firewall systems. Most approaches define specialized domain languages that get compiled into firewall rule sets, with some of them relying on formal specification, ontology, or graphical models. The approaches’ have improved over time, but there are still many drawbacks that need to be solved before wider application.
Configuration vulnerability in SNORT for Windows Operating Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :82–89.
.
2022. Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
.
2022. In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
Development of an Intrusion Detection System Prototype in Mobile Ad Hoc Networks Based on Machine Learning Methods. 2022 International Russian Automation Conference (RusAutoCon). :171—175.
.
2022. Wireless ad hoc networks are characterized by dynamic topology and high node mobility. Network attacks on wireless ad hoc networks can significantly reduce performance metrics, such as the packet delivery ratio from the source to the destination node, overhead, throughput, etc. The article presents an experimental study of an intrusion detection system prototype in mobile ad hoc networks based on machine learning. The experiment is carried out in a MANET segment of 50 nodes, the detection and prevention of DDoS and cooperative blackhole attacks are investigated. The dependencies of features on the type of network traffic and the dependence of performance metrics on the speed of mobile nodes in the network are investigated. The conducted experimental studies show the effectiveness of an intrusion detection system prototype on simulated data.
Classification of Network Traffic Using Generative Adversarial Networks. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :519–525.
.
2021. Currently, the increasing complexity of DDoS attacks makes it difficult for modern security systems to track them. Machine learning techniques are increasingly being used in such systems as they are well established. However, a new problem arose: the creation of informative datasets. Generative adversarial networks can help create large, high-quality datasets for machine learning training. The article discusses the issue of using generative adversarial networks to generate new patterns of network attacks for the purpose of their further use in training.
Data Exfiltration: Methods and Detection Countermeasures. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :442—447.
.
2021. Data exfiltration is of increasing concern throughout the world. The number of incidents and capabilities of data exfiltration attacks are growing at an unprecedented rate. However, such attack vectors have not been deeply explored in the literature. This paper aims to address this gap by implementing a data exfiltration methodology, detailing some data exfiltration methods. Groups of exfiltration methods are incorporated into a program that can act as a testbed for owners of any network that stores sensitive data. The implemented methods are tested against the well-known network intrusion detection system Snort, where all of them have been successfully evaded detection by its community rule sets. Thus, in this paper, we have developed new countermeasures to prevent and detect data exfiltration attempts using these methods.
Service Placement for Real-Time Applications: Rate-Adaptation and Load-Balancing at the Network Edge. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :207—215.
.
2020. Mobile Edge Computing may become a prevalent platform to support applications where mobile devices have limited compute, storage, energy and/or data privacy concerns. In this paper, we study the efficient provisioning and management of compute resources in the Edge-to-Cloud continuum for different types of real-time applications with timeliness requirements depending on application-level update rates and communication/compute delays. We begin by introducing a highly stylized network model allowing us to study the salient features of this problem including its sensitivity to compute vs. communication costs, application requirements, and traffic load variability. We then propose an online decentralized service placement algorithm, based on estimating network delays and adapting application update rates, which achieves high service availability. Our results exhibit how placement can be optimized and how a load-balancing strategy can achieve near-optimal service availability in large networks.
A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :374—379.
.
2021. Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained.
Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
.
2021. Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :734—741.
.
2021. With the rapid development of communication net-work, the types and quantities of network traffic data have in-creased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without man-ual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the ex-isting unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
Decoy VNF for Enhanced Security in Fog Computing. 2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). :75—81.
.
2021. Fog computing extends cloud resources to the edge of the network, thus enabling network providers to support real-time applications at low latencies. These applications further demand high security against malicious attacks that target distributed fog servers. One effective defense mechanism here against cyber attacks is the use of honeypots. The latter acts as a potential target for attackers by diverting malicious traffic away from the servers that are dedicated to legitimate users. However, one main limitation of honeypots is the lack of real traffic and network activities. Therefore, it is important to implement a solution that simulates the behavior of the real system to lure attackers without the risk of being exposed. Hence this paper proposes a practical approach to generate network traffic by introducing decoy virtual network functions (VNF) embedded on fog servers, which make the network traffic on honeypots resemble a legitimate, vulnerable fog system to attract cyber attackers. The use of virtualization allows for robust scalability and modification of network functions based on incoming attacks, without the need for dedicated hardware. Moreover, deep learning is leveraged here to build fingerprints for each real VNF, which is subsequently used to support its decoy counterpart against active probes. The proposed framework is evaluated based on CPU utilization, memory usage, disk input/output access, and network latency.
Forensic Analysis of Automotive Controller Area Network Emissions for Problem Resolution. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. :619–623.
.
2021. Electromagnetic emissions associated with the transmission of automotive controller area network (CAN) messages within a passenger car have been analysed and used to reconstruct the original CAN messages. Concurrent monitoring of the CAN traffic via a wired connection to the vehicle OBD-II port was used to validate the effectiveness of the reconstruction process. These results confirm the feasibility of reconstructing in-vehicle network data for forensic purposes, without the need for wired access, at distances of up to 1 m from the vehicle by using magnetic field measurements, and up to 3 m using electric field measurements. This capability has applications in the identification and resolution of EMI issues in vehicle data network, as well as possible implications for automotive cybersecurity.
An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
.
2021. We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques. 2021 Third International Conference on Transdisciplinary AI (TransAI). :19–24.
.
2021. The number of prominent ransomware attacks has increased recently. In this research, we detect ransomware by analyzing network traffic by using machine learning algorithms and comparing their detection performances. We have developed multi-class classification models to detect families of ransomware by using the selected network traffic features, which focus on the Transmission Control Protocol (TCP). Our experiment showed that decision trees performed best for classifying ransomware families with 99.83% accuracy, which is slightly better than the random forest algorithm with 99.61% accuracy. The experimental result without feature selection classified six ransomware families with high accuracy. On the other hand, classifiers with feature selection gave nearly the same result as those without feature selection. However, using feature selection gives the advantage of lower memory usage and reduced processing time, thereby increasing speed. We discovered the following ten important features for detecting ransomware: time delta, frame length, IP length, IP destination, IP source, TCP length, TCP sequence, TCP next sequence, TCP header length, and TCP initial round trip.
API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.
.
2021. Ransomware is a major malware attack experienced by large corporations and healthcare services. Ransomware employs the idea of cryptovirology, which uses cryptography to design malware. The goal of ransomware is to extort ransom by threatening the victim with the destruction of their data. Ransomware typically involves a 3-step process: analyzing the victim’s network traffic, identifying a vulnerability, and then exploiting it. Thus, the detection of ransomware has become an important undertaking that involves various sophisticated solutions for improving security. To further enhance ransomware detection capabilities, this paper focuses on an Application Programming Interface (API)-based ransomware detection approach in combination with machine learning (ML) techniques. The focus of this research is (i) understanding the life cycle of ransomware on the Windows platform, (ii) dynamic analysis of ransomware samples to extract various features of malicious code patterns, and (iii) developing and validating machine learning-based ransomware detection models on different ransomware and benign samples. Data were collected from publicly available repositories and subjected to sandbox analysis for sampling. The sampled datasets were applied to build machine learning models. The grid search hyperparameter optimization algorithm was employed to obtain the best fit model; the results were cross-validated with the testing datasets. This analysis yielded a high ransomware detection accuracy of 99.18% for Windows-based platforms and shows the potential for achieving high-accuracy ransomware detection capabilities when using a combination of API calls and an ML model. This approach can be further utilized with existing multilayer security solutions to protect critical data from ransomware attacks.
Network Traffic Analysis for Real-Time Detection of Cyber Attacks. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :642—646.
.
2021. Preventing the cyberattacks has been a concern for any organization. In this research, the authors propose a novel method to detect cyberattacks by monitoring and analyzing the network traffic. It was observed that the various log files that are created in the server does not contain all the relevant traces to detect a cyberattack. Hence, the HTTP traffic to the web server was analyzed to detect any potential cyberattacks. To validate the research, a web server was simulated using the Opensource Damn Vulnerable Web Application (DVWA) and the cyberattacks were simulated as per the OWASP standards. A python program was scripted that captured the network traffic to the DVWA server. This traffic was analyzed in real-time by reading the various HTTP parameters viz., URLs, Get / Post methods and the dependencies. The results were found to be encouraging as all the simulated attacks in real-time could be successfully detected. This work can be used as a template by various organizations to prevent any insider threat by monitoring the internal HTTP traffic.
Detecting Cryptojacking Traffic Based on Network Behavior Features. 2021 IEEE Global Communications Conference (GLOBECOM). :01—06.
.
2021. Bitcoin and other digital cryptocurrencies have de-veloped rapidly in recent years. To reduce hardware and power costs, many criminals use the botnet to infect other hosts to mine cryptocurrency for themselves, which has led to the proliferation of mining botnets and is referred to as cryptojacking. At present, the mechanisms specific to cryptojacking detection include host-based, Deep Packet Inspection (DPI) based, and dynamic network characteristics based. Host-based detection requires detection installation and running at each host, and the other two are heavyweight. Besides, DPI-based detection is a breach of privacy and loses efficacy if encountering encrypted traffic. This paper de-signs a lightweight cryptojacking traffic detection method based on network behavior features for an ISP, without referring to the payload of network traffic. We set up an environment to collect cryptojacking traffic and conduct a cryptojacking traffic study to obtain its discriminative network traffic features extracted from only the first four packets in a flow. Our experimental study suggests that the machine learning classifier, random forest, based on the extracted discriminative network traffic features can accurately and efficiently detect cryptojacking traffic.
Self-organizing Software Defined Mesh Networks to Counter Failures and Attacks. 2021 International Conference on Intelligent Technologies (CONIT). :1–7.
.
2021. With current Traditional / Legacy networks, the reliance on manual intervention to solve a variety of issues be it primary operational functionalities like addressing Link-failure or other consequent complexities arising out of existing solutions for challenges like Link-flapping or facing attacks like DDoS attacks is substantial. This physical and manual approach towards network configurations to make significant changes result in very slow updates and increased probability of errors and are not sufficient to address and support the rapidly shifting workload of the networks due to the fact that networking decisions are left to the hands of physical networking devices. With the advent of Software Defined Networking (SDN) which abstracts the network functionality planes, separating it from physical hardware – and decoupling the data plane from the control plane, it is able to provide a degree of automation for the network resources and management of the services provided by the network. This paper explores some of the aspects of automation provided by SDN capabilities in a Mesh Network (provides Network Security with redundancy of communication links) which contribute towards making the network inherently intelligent and take decisions without manual intervention and thus take a step towards Intelligent Automated Networks.
Detecting SSH and FTP Brute Force Attacks in Big Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :760–765.
.
2021. We present a simple approach for detecting brute force attacks in the CSE-CIC-IDS2018 Big Data dataset. We show our approach is preferable to more complex approaches since it is simpler, and yields stronger classification performance. Our contribution is to show that it is possible to train and test simple Decision Tree models with two independent variables to classify CSE-CIC-IDS2018 data with better results than reported in previous research, where more complex Deep Learning models are employed. Moreover, we show that Decision Tree models trained on data with two independent variables perform similarly to Decision Tree models trained on a larger number independent variables. Our experiments reveal that simple models, with AUC and AUPRC scores greater than 0.99, are capable of detecting brute force attacks in CSE-CIC-IDS2018. To the best of our knowledge, these are the strongest performance metrics published for the machine learning task of detecting these types of attacks. Furthermore, the simplicity of our approach, combined with its strong performance, makes it an appealing technique.