Visible to the public Biblio

Found 373 results

Filters: Keyword is telecommunication traffic  [Clear All Filters]
2022-06-09
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
Atluri, Venkata, Horne, Jeff.  2021.  A Machine Learning based Threat Intelligence Framework for Industrial Control System Network Traffic Indicators of Compromise. SoutheastCon 2021. :1–5.
Cyber-attacks on our Nation's Critical Infrastructure are growing. In this research, a Cyber Threat Intelligence (CTI) framework is proposed, developed, and tested. The results of the research, using 5 different simulated attacks on a dataset from an Industrial Control System (ICS) testbed, are presented with the extracted IOCs. The Bagging Decision Trees model showed the highest performance of testing accuracy (94.24%), precision (0.95), recall (0.93), and F1-score (0.94) among the 9 different machine learning models studied.
2022-05-24
Pellenz, Marcelo E., Lachowski, Rosana, Jamhour, Edgard, Brante, Glauber, Moritz, Guilherme Luiz, Souza, Richard Demo.  2021.  In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
Sukjaimuk, Rungrot, Nguyen, Quang N., Sato, Takuro.  2021.  An Efficient Congestion Control Model utilizing IoT wireless sensors in Information-Centric Networks. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :210–213.
Congestion control is one of the essential keys to enhance network efficiency so that the network can perform well even in the case of packet drop. This problem is even more challenging in Information-Centric Networking (ICN), a typical Future Internet design, which employs the packet flooding policy for forwarding the information. To diminish the high traffic load due to the huge number of packets in the era of the Internet of Things (IoT), this paper proposes an effective caching and forwarding algorithm to diminish the congestion rate of the IoT wireless sensor in ICN. The proposed network system utilizes accumulative popularity-based delay transmission time for forwarding strategy and includes the consecutive chunks-based segment caching scheme. The evaluation results using ndnSIM, a widely-used ns-3 based ICN simulator, demonstrated that the proposed system can achieve less interest packet drop rate, more cache hit rate, and higher network throughput, compared to the relevant ICN-based benchmarks. These results prove that the proposed ICN design can achieve higher network efficiency with a lower congestion rate than that of the other related ICN systems using IoT sensors.
2022-05-12
Aribisala, Adedayo, Khan, Mohammad S., Husari, Ghaith.  2021.  MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0063–0069.
Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.
Şengül, Özkan, Özkılıçaslan, Hasan, Arda, Emrecan, Yavanoğlu, Uraz, Dogru, Ibrahim Alper, Selçuk, Ali Aydın.  2021.  Implementing a Method for Docker Image Security. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :34–39.
Containers that can be easily created, transported and scaled with the use of container-based virtualization technologies work better than classical virtualization technologies and provide efficient resource usage. The Docker platform is one of the most widely used solutions among container-based virtualization technologies. The OS-level virtualization of the Docker platform and the container’s use of the host operating system kernel may cause security problems. In this study, a method including static and dynamic analysis has been proposed to ensure Docker image and container security. In the static analysis phase of the method, the packages of the images are scanned for vulnerabilities and malware. In the dynamic analysis phase, Docker containers are run for a certain period of time, after the open port scanning, network traffic is analyzed with the Snort3. Seven Docker images are analyzed and the results are shared.
2022-04-25
Yue, Ren, Miao, Chen, Bo, Li, Xueyuan, Wang, Xingzhi, Li, Zijun, Liao.  2021.  Research and Implementation of Efficient DPI Engine Base on DPDK. 2021 China Automation Congress (CAC). :3868–3873.
With the rapid development of the Internet, network traffic is becoming more complex and diverse. At the same time, malicious traffic is growing. This seriously threatens the security of networks and information. However, the current DPI (Deep Packet Inspect) engine based on x86 architecture is slow in monitoring speed, which cannot meet the needs. Generally, two factors affect the detection rate: CPU and memory; The efficiency of data packet acquisition, and multi regular expression matching. Under these circumstances, this paper presents an efficient implementation of the DPI engine based on a generic x86 platform. DPDK is used as the platform of network data packets acquisition and processing. Using the multi-queue of the NIC (network interface controller) and the customized symmetric RSS key, the network traffic is divided and reorganized in the form of conversation. The core of traffic identification is hyperscan, which uses a flow pattern to match the packets load of a single conversation efficiently. It greatly reduces memory requirements. The method makes full use of the system resources and takes into account the advantages of high efficiency of hardware implementation. And it has a remarkable improvement in the efficiency of recognition.
Nawaz, Alia, Naeem, Tariq, Tayyab, Muhammad.  2021.  Application Profiling From Encrypted Traffic. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Everyday millions of people use Internet for various purposes including information access, communication, business, education, entertainment and more. As a result, huge amount of information is exchanged between billions of connected devices. This information can be encapsulated in different types of data packets. This information is also referred to as network traffic. The traffic analysis is a challenging task when the traffic is encrypted and the contents are not readable. So complex algorithms required to deduce the information and form patterns for traffic analysis. Many of currently available techniques rely on application specific attribute analysis, deep packet inspection (DPI) or content-based analysis that become ineffective on encrypted traffic. The article will focused on analysis techniques for encrypted traffic that are adaptive to address the evolving nature and increasing volume of network traffic. The proposed solution solution is less dependent on application and protocol specific parameters so that it can adapt to new types of applications and protocols. Our results shows that processing required for traffic analysis need to be in acceptable limits to ensure applicability in real-time applications without compromising performance.
Dijk, Allard.  2021.  Detection of Advanced Persistent Threats using Artificial Intelligence for Deep Packet Inspection. 2021 IEEE International Conference on Big Data (Big Data). :2092–2097.

Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.

Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.  2021.  ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.

Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.

2022-04-19
Frolova, Daria, Kogos, Konstsntin, Epishkina, Anna.  2021.  Traffic Normalization for Covert Channel Protecting. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2330–2333.
Nowadays a huge amount of sensitive information is sending via packet data networks and its security doesn't provided properly. Very often information leakage causes huge damage to organizations. One of the mechanisms to cause information leakage when it transmits through a communication channel is to construct a covert channel. Everywhere used packet networks provide huge opportunities for covert channels creating, which often leads to leakage of critical data. Moreover, covert channels based on packet length modifying can function in a system even if traffic encryption is applied and there are some data transfer schemes that are difficult to detect. The purpose of the paper is to construct and examine a normalization protection tool against covert channels. We analyze full and partial normalization, propose estimation of the residual covert channel capacity in a case of counteracting and determine the best parameters of counteraction tool.
2022-04-18
Sun, Chuang, Shen, Sujin.  2021.  An Improved Byzantine Consensus Based Multi-Signature Algorithm. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :777–780.
Traditional grid-centric data storage methods are vulnerable to network attacks or failures due to downtime, causing problems such as data loss or tampering. The security of data storage can be effectively improved by establishing an alliance chain. However, the existing consortium chain consensus algorithm has low scalability, and the consensus time will explode as the number of nodes increases. This paper proposes an improved consensus algorithm (MSBFT) based on multi-signature to address this problem, which spreads data by establishing a system communication tree, reducing communication and network transmission costs, and improving system scalability. By generating schnorr multi-signature as the shared signature of system nodes, the computational cost of verification between nodes is reduced. At the end of the article, simulations prove the superiority of the proposed method.
Shi, Pinyi, Song, Yongwook, Fei, Zongming, Griffioen, James.  2021.  Checking Network Security Policy Violations via Natural Language Questions. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network security policies provide high-level directives regarding acceptable and unacceptable use of the network. Organizations specify these high-level directives in policy documents written using human-readable natural language. The challenge is to convert these natural language policies to the network configurations/specifications needed to enforce the policy. Network administrators, who are responsible for enforcing the policies, typically translate the policies manually, which is a challenging and error-prone process. As a result, network operators (as well as the policy authors) often want to verify that network policies are being correctly enforced. In this paper, we propose Network Policy Conversation Engine (NPCE), a system designed to help network operators (or policy writers) interact with the network using natural language (similar to the language used in the network policy statements themselves) to understand whether policies are being correctly enforced. The system leverages emerging big data collection and analysis techniques to record flow and packet level activity throughout the network that can be used to answer users policy questions. The system also takes advantage of recent advances in Natural Language Processing (NLP) to translate natural language policy questions into the corresponding network queries. To evaluate our system, we demonstrate a wide range of policy questions – inspired by actual networks policies posted on university websites – that can be asked of the system to determine if a policy violation has occurred.
2022-04-13
Abdiyeva-Aliyeva, Gunay, Hematyar, Mehran, Bakan, Sefa.  2021.  Development of System for Detection and Prevention of Cyber Attacks Using Artifıcial Intelligence Methods. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1—5.
Artificial intelligence (AI) technologies have given the cyber security industry a huge leverage with the possibility of having significantly autonomous models that can detect and prevent cyberattacks – even though there still exist some degree of human interventions. AI technologies have been utilized in gathering data which can then be processed into information that are valuable in the prevention of cyberattacks. These AI-based cybersecurity frameworks have commendable scalability about them and are able to detect malicious activities within the cyberspace in a prompter and more efficient manner than conventional security architectures. However, our one or two completed studies did not provide a complete and clear analyses to apply different machine learning algorithms on different media systems. Because of the existing methods of attack and the dynamic nature of malware or other unwanted software (adware etc.) it is important to automatically and systematically create, update and approve malicious packages that can be available to the public. Some of Complex tests have shown that DNN performs maybe can better than conventional machine learning classification. Finally, we present a multiple, large and hybrid DNN torrent structure called Scale-Hybrid-IDS-AlertNet, which can be used to effectively monitor to detect and review the impact of network traffic and host-level events to warn directly or indirectly about cyber-attacks. Besides this, they are also highly adaptable and flexible, with commensurate efficiency and accuracy when it comes to the detection and prevention of cyberattacks.There has been a multiplicity of AI-based cyber security architectures in recent years, and each of these has been found to show varying degree of effectiveness. Deep Neural Networks, which tend to be more complex and even more efficient, have been the major focus of research studies in recent times. In light of the foregoing, the objective of this paper is to discuss the use of AI methods in fighting cyberattacks like malware and DDoS attacks, with attention on DNN-based models.
Sulaga, D Tulasi, Maag, Angelika, Seher, Indra, Elchouemi, Amr.  2021.  Using Deep learning for network traffic prediction to secure Software networks against DDoS attacks. 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA). :1—10.
Deep learning (DL) is an emerging technology that is being used in many areas due to its effectiveness. One of its major applications is attack detection and prevention of backdoor attacks. Sampling-based measurement approaches in the software-defined network of an Internet of Things (IoT) network often result in low accuracy, high overhead, higher memory consumption, and low attack detection. This study aims to review and analyse papers on DL-based network prediction techniques against the problem of Distributed Denial of service attack (DDoS) in a secure software network. Techniques and approaches have been studied, that can effectively predict network traffic and detect DDoS attacks. Based on this review, major components are identified in each work from which an overall system architecture is suggested showing the basic processes needed. Major findings are that the DL is effective against DDoS attacks more than other state of the art approaches.
Kousar, Heena, Mulla, Mohammed Moin, Shettar, Pooja, D. G., Narayan.  2021.  DDoS Attack Detection System using Apache Spark. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
Distributed Denial of Service Attacks (DDoS) are most widely used cyber-attacks. Thus, design of DDoS detection mechanisms has attracted attention of researchers. Design of these mechanisms involves building statistical and machine learning models. Most of the work in design of mechanisms is focussed on improving the accuracy of the model. However, due to large volume of network traffic, scalability and performance of these techniques is an important research issue. In this work, we use Apache Spark framework for detection of DDoS attacks. We use NSL-KDD Cup as a benchmark dataset for experimental analysis. The results reveal that random forest performs better than decision trees and distributed processing improves the performance in terms of pre-processing and training time.
Dimolianis, Marinos, Pavlidis, Adam, Maglaris, Vasilis.  2021.  SYN Flood Attack Detection and Mitigation using Machine Learning Traffic Classification and Programmable Data Plane Filtering. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :126—133.
Distributed Denial of Service (DDoS) attacks are widely used by malicious actors to disrupt network infrastructures/services. A common attack is TCP SYN Flood that attempts to exhaust memory and processing resources. Typical mitigation mechanisms, i.e. SYN cookies require significant processing resources and generate large rates of backscatter traffic to block them. In this paper, we propose a detection and mitigation schema that focuses on generating and optimizing signature-based rules. To that end, network traffic is monitored and appropriate packet-level data are processed to form signatures i.e. unique combinations of packet field values. These are fed to machine learning models that classify them to malicious/benign. Malicious signatures corresponding to specific destinations identify potential victims. TCP traffic to victims is redirected to high-performance programmable XDPenabled firewalls that filter off ending traffic according to signatures classified as malicious. To enhance mitigation performance malicious signatures are subjected to a reduction process, formulated as a multi-objective optimization problem. Minimization objectives are (i) the number of malicious signatures and (ii) collateral damage on benign traffic. We evaluate our approach in terms of detection accuracy and packet filtering performance employing traces from production environments and high rate generated attack traffic. We showcase that our approach achieves high detection accuracy, significantly reduces the number of filtering rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.
2022-04-12
K M, Akshobhya.  2021.  Machine learning for anonymous traffic detection and classification. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :942—947.
Anonymity is one of the biggest concerns in web security and traffic management. Though web users are concerned about privacy and security various methods are being adopted in making the web more vulnerable. Browsing the web anonymously not only threatens the integrity but also questions the motive of such activity. It is important to classify the network traffic and prevent source and destination from hiding with each other unless it is for benign activity. The paper proposes various methods to classify the dark web at different levels or hierarchies. Various preprocessing techniques are proposed for feature selection and dimensionality reduction. Anon17 dataset is used for training and testing the model. Three levels of classification are proposed in the paper based on the network, traffic type, and application.
Ma, Haoyu, Cao, Jianqiu, Mi, Bo, Huang, Darong, Liu, Yang, Zhang, Zhenyuan.  2021.  Dark web traffic detection method based on deep learning. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). :842—847.
Network traffic detection is closely related to network security, and it is also a hot research topic now. With the development of encryption technology, traffic detection has become more and more difficult, and many crimes have occurred on the dark web, so how to detect dark web traffic is the subject of this study. In this paper, we proposed a dark web traffic(Tor traffic) detection scheme based on deep learning and conducted experiments on public data sets. By analyzing the results of the experiment, our detection precision rate reached 95.47%.
2022-04-01
Sutton, Robert, Ludwiniak, Robert, Pitropakis, Nikolaos, Chrysoulas, Christos, Dagiuklas, Tasos.  2021.  Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.
Raj, Mariam, Tahir, Shahzaib, Khan, Fawad, Tahir, Hasan, Zulkifl, Zeeshan.  2021.  A Novel Fog-based Framework for Preventing Cloud Lock-in while Enabling Searchable Encryption. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—6.
Cloud computing has helped in managing big data and providing resources remotely and ubiquitously, but it has some latency and security concerns. Fog has provided tremendous advantages over cloud computing which include low latency rate, improved real-time interactions, reduced network traffic overcrowding, and improved reliability, however, security concerns need to be addressed separately. Another major issue in the cloud is Cloud Lock-in/Vendor Lock-in. Through this research, an effort has been made to extend fog computing and Searchable Encryption technologies. The proposed system can reduce the issue of cloud lock-in faced in traditional cloud computing. The SE schemes used in this paper are Symmetric Searchable Encryption (SSE) and Multi-keyword Ranked Searchable Encryption (MRSE) to achieve confidentiality, privacy, fine-grained access control, and efficient keyword search. This can help to achieve better access control and keyword search simultaneously. An important use of this technique is it helps to prevent the issue of cloud/vendor lock-in. This can shift some computation and storage of index tables over fog nodes that will reduce the dependency on Cloud Service Providers (CSPs).
2022-03-25
Li, Xin, Yi, Peng, Jiang, Yiming, Lu, Xiangyu.  2021.  Traffic Anomaly Detection Algorithm Based on Improved Salp Swarm Optimal Density Peak Clustering. 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD). :187—191.

Aiming at the problems of low accuracy and poor effect caused by the lack of data labels in most real network traffic, an optimized density peak clustering based on the improved salp swarm algorithm is proposed for traffic anomaly detection. Through the optimization of cosine decline and chaos strategy, the salp swarm algorithm not only accelerates the convergence speed, but also enhances the search ability. Moreover, we use the improved salp swarm algorithm to adaptively search the best truncation distance of density peak clustering, which avoids the subjectivity and uncertainty of manually selecting the parameters. The experimental results based on NSL-KDD dataset show that the improved salp swarm algorithm achieves faster convergence speed and higher precision, increases the average anomaly detection accuracy of 4.74% and detection rate of 6.14%, and reduces the average false positive rate of 7.38%.

2022-03-01
Vrána, Roman, Ko\v renek, Jan.  2021.  Efficient Acceleration of Decision Tree Algorithms for Encrypted Network Traffic Analysis. 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). :115–118.
Network traffic analysis and deep packet inspection are time-consuming tasks, which current processors can not handle at 100 Gbps speed. Therefore security systems need fast packet processing with hardware acceleration. With the growing of encrypted network traffic, it is necessary to extend Intrusion Detection Systems (IDSes) and other security tools by new detection methods. Security tools started to use classifiers trained by machine learning techniques based on decision trees. Random Forest, Compact Random Forest and AdaBoost provide excellent result in network traffic analysis. Unfortunately, hardware architectures for these machine learning techniques need high utilisation of on-chip memory and logic resources. Therefore we propose several optimisations of highly pipelined architecture for acceleration of machine learning techniques based on decision trees. The optimisations use the various encoding of a feature vector to reduce hardware resources. Due to the proposed optimisations, it was possible to reduce LUTs by 70.5 % for HTTP brute force attack detection and BRAMs by 50 % for application protocol identification. Both with only negligible impact on classifiers' accuracy. Moreover, proposed optimisations reduce wires and multiplexors in the processing pipeline, positively affecting the proposed architecture's maximal achievable frequency.