Biblio
Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
Aiming at the problems of low accuracy and poor effect caused by the lack of data labels in most real network traffic, an optimized density peak clustering based on the improved salp swarm algorithm is proposed for traffic anomaly detection. Through the optimization of cosine decline and chaos strategy, the salp swarm algorithm not only accelerates the convergence speed, but also enhances the search ability. Moreover, we use the improved salp swarm algorithm to adaptively search the best truncation distance of density peak clustering, which avoids the subjectivity and uncertainty of manually selecting the parameters. The experimental results based on NSL-KDD dataset show that the improved salp swarm algorithm achieves faster convergence speed and higher precision, increases the average anomaly detection accuracy of 4.74% and detection rate of 6.14%, and reduces the average false positive rate of 7.38%.