Visible to the public Biblio

Filters: Keyword is HTTP traffic  [Clear All Filters]
2019-06-10
Debatty, T., Mees, W., Gilon, T..  2018.  Graph-Based APT Detection. 2018 International Conference on Military Communications and Information Systems (ICMCIS). :1-8.

In this paper we propose a new algorithm to detect Advanced Persistent Threats (APT's) that relies on a graph model of HTTP traffic. We also implement a complete detection system with a web interface that allows to interactively analyze the data. We perform a complete parameter study and experimental evaluation using data collected on a real network. The results show that the performance of our system is comparable to currently available antiviruses, although antiviruses use signatures to detect known malwares while our algorithm solely uses behavior analysis to detect new undocumented attacks.

2015-05-05
Marchal, S., Xiuyan Jiang, State, R., Engel, T..  2014.  A Big Data Architecture for Large Scale Security Monitoring. Big Data (BigData Congress), 2014 IEEE International Congress on. :56-63.

Network traffic is a rich source of information for security monitoring. However the increasing volume of data to treat raises issues, rendering holistic analysis of network traffic difficult. In this paper we propose a solution to cope with the tremendous amount of data to analyse for security monitoring perspectives. We introduce an architecture dedicated to security monitoring of local enterprise networks. The application domain of such a system is mainly network intrusion detection and prevention, but can be used as well for forensic analysis. This architecture integrates two systems, one dedicated to scalable distributed data storage and management and the other dedicated to data exploitation. DNS data, NetFlow records, HTTP traffic and honeypot data are mined and correlated in a distributed system that leverages state of the art big data solution. Data correlation schemes are proposed and their performance are evaluated against several well-known big data framework including Hadoop and Spark.

2014-09-26
Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T..  2012.  Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. Security and Privacy (SP), 2012 IEEE Symposium on. :332-346.

We consider the setting of HTTP traffic over encrypted tunnels, as used to conceal the identity of websites visited by a user. It is well known that traffic analysis (TA) attacks can accurately identify the website a user visits despite the use of encryption, and previous work has looked at specific attack/countermeasure pairings. We provide the first comprehensive analysis of general-purpose TA countermeasures. We show that nine known countermeasures are vulnerable to simple attacks that exploit coarse features of traffic (e.g., total time and bandwidth). The considered countermeasures include ones like those standardized by TLS, SSH, and IPsec, and even more complex ones like the traffic morphing scheme of Wright et al. As just one of our results, we show that despite the use of traffic morphing, one can use only total upstream and downstream bandwidth to identify – with 98% accuracy - which of two websites was visited. One implication of what we find is that, in the context of website identification, it is unlikely that bandwidth-efficient, general-purpose TA countermeasures can ever provide the type of security targeted in prior work.