Visible to the public Biblio

Filters: Keyword is Design Method  [Clear All Filters]
2020-08-10
Qin, Hao, Li, Zhi, Hu, Peng, Zhang, Yulong, Dai, Yuwen.  2019.  Research on Point-To-Point Encryption Method of Power System Communication Data Based on Block Chain Technology. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :328–332.
Aiming at the poor stability of traditional communication data encryption methods, a point-to-point encryption method of power system communication data based on block chain technology is studied and designed. According to the principle of asymmetric key encryption, the design method makes use of the decentralization and consensus mechanism of block chain technology to develop the public key distribution scheme. After the public key distribution is completed, the sender and receiver of communication data generate the transfer key and pair the key with the public key to realize the pairing between data points. Xor and modular exponentiation are performed on the communication data content, and prime Numbers are used to fill the content data block. The receiver decrypts the data according to the encryption identifier of the data content, and completes the design of the encryption method of communication data point to ground. Through the comparison with the traditional encryption method, it is proved that the larger the amount of encrypted data is, the more secure the communication data can be, and the stability performance is better than the traditional encryption method.
2015-05-06
Hoos, E..  2014.  Design method for developing a Mobile Engineering-Application Middleware (MEAM). Pervasive Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference on. :176-177.

Mobile Apps running on smartphones and tablet pes offer a new possibility to enhance the work of engineers because they provide an easy-to-use, touchscreen-based handling and can be used anytime and anywhere. Introducing mobile apps in the engineering domain is difficult because the IT environment is heterogeneous and engineering-specific challenges in the app development arise e. g., large amount of data and high security requirements. There is a need for an engineering-specific middleware to facilitate and standardize the app development. However, such a middleware does not yet exist as well as a holistic set of requirements for the development. Therefore, we propose a design method which offers a systematic procedure to develop Mobile Engineering-Application Middleware.