Visible to the public Biblio

Filters: Keyword is Manufacturing industries  [Clear All Filters]
2023-02-17
Tilloo, Pallavi, Parron, Jesse, Obidat, Omar, Zhu, Michelle, Wang, Weitian.  2022.  A POMDP-based Robot-Human Trust Model for Human-Robot Collaboration. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :1009–1014.
Trust is a cognitive ability that can be dependent on behavioral consistency. In this paper, a partially observable Markov Decision Process (POMDP)-based computational robot-human trust model is proposed for hand-over tasks in human-robot collaborative contexts. The robot's trust in its human partner is evaluated based on the human behavior estimates and object detection during the hand-over task. The human-robot hand-over process is parameterized as a partially observable Markov Decision Process. The proposed approach is verified in real-world human-robot collaborative tasks. Results show that our approach can be successfully applied to human-robot hand-over tasks to achieve high efficiency, reduce redundant robot movements, and realize predictability and mutual understanding of the task.
ISSN: 2642-6633
2023-02-03
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
2022-09-09
Jayaprasanna, M.C., Soundharya, V.A., Suhana, M., Sujatha, S..  2021.  A Block Chain based Management System for Detecting Counterfeit Product in Supply Chain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :253—257.

In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.

Hong, TingYi, Kolios, Athanasios.  2020.  A Framework for Risk Management of Large-Scale Organisation Supply Chains. 2020 International Conference on Decision Aid Sciences and Application (DASA). :948—953.
This paper establishes a novel approach to supply chain risk management (SCRM), through establishing a risk assessment framework addressing the importance of SCRM and supply chain visibility (SCV). Through a quantitative assessment and empirical evidence, the paper also discusses the specific risks within the manufacturing industry. Based on survey data collected and a case study from Asia, the paper finds that supplier delays and poor product quality can be considered as prevailing risks relevant to the manufacturing industry. However, as supply chain risks are inter-related, one must increase supply chain visibility to fully consider risk causes that ultimately lead to the risk effects. The framework established can be applied to different industries with the view to inform organisations on prevailing risks and prompt motivate improvement in supply chain visibility, thereby, modify risk management strategies. Through suggesting possible risk sources, organisations can adopt proactive risk mitigation strategies so as to more efficiently manage their exposure.
2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2020-09-28
Ahmad, Ibtihaj, Zarrar, Muhammad Kaab, Saeed, Takreem, Rehman, Saad.  2018.  Security Aspects of Cyber Physical Systems. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cyber Physical System (CPS) is one of the emerging technologies of the day due to its large number of applications. Its applications extends to automotive, commercial, medical, home appliances and manufacturing industries. Mass research is being conducted in this area including design models, signal processing, control system models, communication models and security. One of the most important aspects of these is security and privacy of CPS. There are a number of vulnerabilities and threats that can be used by an attacker to exploit a cyber physical system. This paper provides a brief review of current security threats, vulnerabilities and its solutions for CPS. For the sake of simplicity the security threats have been divided into two classes i.e. control security and information security. Based on this division various attack methods and their possible solutions have been discussed.
2020-03-23
Kern, Alexander, Anderl, Reiner.  2019.  Securing Industrial Remote Maintenance Sessions using Software-Defined Networking. 2019 Sixth International Conference on Software Defined Systems (SDS). :72–79.
Many modern business models of the manufacturing industry use the possibilities of digitization. In particular, the idea of connecting machines to networks and communication infrastructure is gaining momentum. However, in addition to the considerable economic advantages, this development also brings decisive disadvantages. By connecting previously encapsulated industrial networks with untrustworthy external networks such as the Internet, machines and systems are suddenly exposed to the same threats as conventional IT systems. A key problem today is the typical network paradigm with static routers and switches that cannot meet the dynamic requirements of a modern industrial network. Current security solutions often only threat symptoms instead of tackling the cause. In this paper we will therefore analyze the weaknesses of current networks and security solutions using the example of industrial remote maintenance. We will then present a novel concept of how Software-Defined Networking (SDN) in combination with a policy framework that supports attribute-based access control can be used to meet current and future security requirements in dynamic industrial networks. Furthermore, we will introduce an examplary implementation of this novel security framework for the use case of industrial remote maintenance and evaluate the solution. Our results show that SDN in combination with an Attribute-based Access Control (ABAC) policy framework is perfectly suited to increase flexibility and security of modern industrial networks at the same time.
2015-05-06
Perzyk, Marcin, Kochanski, Andrzej, Kozlowski, Jacek, Soroczynski, Artur, Biernacki, Robert.  2014.  Comparison of Data Mining Tools for Significance Analysis of Process Parameters in Applications to Process Fault Diagnosis. Inf. Sci.. 259:380–392.

This paper presents an evaluation of various methodologies used to determine relative significances of input variables in data-driven models. Significance analysis applied to manufacturing process parameters can be a useful tool in fault diagnosis for various types of manufacturing processes. It can also be applied to building models that are used in process control. The relative significances of input variables can be determined by various data mining methods, including relatively simple statistical procedures as well as more advanced machine learning systems. Several methodologies suitable for carrying out classification tasks which are characteristic of fault diagnosis were evaluated and compared from the viewpoint of their accuracy, robustness of results and applicability. Two types of testing data were used: synthetic data with assumed dependencies and real data obtained from the foundry industry. The simple statistical method based on contingency tables revealed the best overall performance, whereas advanced machine learning models, such as ANNs and SVMs, appeared to be of less value.