Visible to the public Biblio

Filters: Keyword is padding  [Clear All Filters]
2023-08-11
Ambedkar, B. R., Bharti, P. K., Husain, Akhtar.  2022.  Enhancing the Performance of Hash Function Using Autonomous Initial Value Proposed Secure Hash Algorithm 256. 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). :560—565.
To verify the integrity and confidentiality of data communicated through the web is a very big issue worldwide because every person wants very fast computing and secure electronic data communication via the web. The authentication of electronic data is done by hashing algorithms. Presently researchers are using one-time padding to convert variable-length input messages into a block of fixed length and also using constant initial values that are constant for any input message. So this reason we are proposing the autonomous initial value proposed secure hash algorithm-256 (AIVPSHA256) and we are enhancing the performance of the hash function by designing and compuiting its experimental results in python 3.9.5 programming language.
2018-04-02
Boicea, A., Radulescu, F., Truica, C. O., Costea, C..  2017.  Database Encryption Using Asymmetric Keys: A Case Study. 2017 21st International Conference on Control Systems and Computer Science (CSCS). :317–323.

Data security has become an issue of increasing importance, especially for Web applications and distributed databases. One solution is using cryptographic algorithms whose improvement has become a constant concern. The increasing complexity of these algorithms involves higher execution times, leading to an application performance decrease. This paper presents a comparison of execution times for three algorithms using asymmetric keys, depending on the size of the encryption/decryption keys: RSA, ElGamal, and ECIES. For this algorithms comparison, a benchmark using Java APIs and an application for testing them on a test database was created.

2014-09-26
Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T..  2012.  Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. Security and Privacy (SP), 2012 IEEE Symposium on. :332-346.

We consider the setting of HTTP traffic over encrypted tunnels, as used to conceal the identity of websites visited by a user. It is well known that traffic analysis (TA) attacks can accurately identify the website a user visits despite the use of encryption, and previous work has looked at specific attack/countermeasure pairings. We provide the first comprehensive analysis of general-purpose TA countermeasures. We show that nine known countermeasures are vulnerable to simple attacks that exploit coarse features of traffic (e.g., total time and bandwidth). The considered countermeasures include ones like those standardized by TLS, SSH, and IPsec, and even more complex ones like the traffic morphing scheme of Wright et al. As just one of our results, we show that despite the use of traffic morphing, one can use only total upstream and downstream bandwidth to identify – with 98% accuracy - which of two websites was visited. One implication of what we find is that, in the context of website identification, it is unlikely that bandwidth-efficient, general-purpose TA countermeasures can ever provide the type of security targeted in prior work.