Biblio
The deceleration of transistor feature size scaling has motivated growing adoption of specialized accelerators implemented as GPUs, FPGAs, ASICs, and more recently new types of computing such as neuromorphic, bio-inspired, ultra low energy, reversible, stochastic, optical, quantum, combinations, and others unforeseen. There is a tension between specialization and generalization, with the current state trending to master slave models where accelerators (slaves) are instructed by a general purpose system (master) running an Operating System (OS). Traditionally, an OS is a layer between hardware and applications and its primary function is to manage hardware resources and provide a common abstraction to applications. Does this function, however, apply to new types of computing paradigms? This paper revisits OS functionality for memristor-based accelerators. We explore one accelerator implementation, the Dot Product Engine (DPE), for a select pattern of applications in machine learning, imaging, and scientific computing and a small set of use cases. We explore typical OS functionality, such as reconfiguration, partitioning, security, virtualization, and programming. We also explore new types of functionality, such as precision and trustworthiness of reconfiguration. We claim that making an accelerator, such as the DPE, more general will result in broader adoption and better utilization.
Modern smart surveillance systems can not only record the monitored environment but also identify the targeted objects and detect anomaly activities. These advanced functions are often facilitated by deep neural networks, achieving very high accuracy and large data processing throughput. However, inappropriate design of the neural network may expose such smart systems to the risks of leaking the target being searched or even the adopted learning model itself to attackers. In this talk, we will present the security challenges in the design of smart surveillance systems. We will also discuss some possible solutions that leverage the unique properties of emerging nano-devices, including the incurred design and performance cost and optimization methods for minimizing these overheads.
Memristors are an attractive option for use in future memory architectures due to their non-volatility, high density and low power operation. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. The typical approach to fault detection and diagnosis in memories entails testing one memory cell at a time. This is time consuming and does not scale for the dense, memristor-based memories. In this paper, we integrate solutions for detecting and locating faults in memristors, and ensure post-silicon recovery from memristor failures. We propose a hybrid diagnosis scheme that exploits sneak-paths inherent in crossbar memories, and uses March testing to test and diagnose multiple memory cells simultaneously, thereby reducing test time. We also provide a repair mechanism that prevents faults in the memory from being activated. The proposed schemes enable and leverage sneak paths during fault detection and diagnosis modes, while still maintaining a sneak-path free crossbar during normal operation. The proposed hybrid scheme reduces fault detection and diagnosis time by ~44%, compared to traditional March tests, and repairs the faulty cell with minimal overhead.