Visible to the public Biblio

Filters: Keyword is Tunneling magnetoresistance  [Clear All Filters]
2023-01-20
Qian, Sen, Deng, Hui, Chen, Chuan, Huang, Hui, Liang, Yun, Guo, Jinghong, Hu, Zhengyong, Si, Wenrong, Wang, Hongkang, Li, Yunjia.  2022.  Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
2019-03-15
Martin, H., Entrena, L., Dupuis, S., Natale, G. Di.  2018.  A Novel Use of Approximate Circuits to Thwart Hardware Trojan Insertion and Provide Obfuscation. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). :41-42.

Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.

2019-01-21
Gao, J., Wang, J., Zhang, L., Yu, Q., Huang, Y., Shen, Y..  2019.  Magnetic Signature Analysis for Smart Security System Based on TMR Magnetic Sensor Array. IEEE Sensors Journal. :1–1.

This paper presents a novel low power security system based on magnetic anomaly detection by using Tunneling Magnetoresistance (TMR) magnetic sensors. In this work, a smart light has been developed, which consists of TMR sensors array, detection circuits, a micro-controller and a battery. Taking the advantage of low power consumption of TMR magnetic sensors, the smart light powered by Li-ion battery can work for several months. Power Spectrum Density of the obtained signal was analyzed to reject background noise and improve the signal to noise ratio effectively by 1.3 dB, which represented a 30% detection range improvement. Also, by sending the signals to PC, the magnetic fingerprints of the objects have been configured clearly. In addition, the quick scan measurement has been also performed to demonstrate that the system can discriminate the multiple objects with 30 cm separation. Since the whole system was compact and portable, it can be used for security check at office, meeting room or other private places without attracting any attention. Moreover, it is promising to integrate multiply such systems together to achieve a wireless security network in large-scale monitoring.

2015-05-06
Rui Zhou, Rong Min, Qi Yu, Chanjuan Li, Yong Sheng, Qingguo Zhou, Xuan Wang, Kuan-Ching Li.  2014.  Formal Verification of Fault-Tolerant and Recovery Mechanisms for Safe Node Sequence Protocol. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :813-820.

Fault-tolerance has huge impact on embedded safety-critical systems. As technology that assists to the development of such improvement, Safe Node Sequence Protocol (SNSP) is designed to make part of such impact. In this paper, we present a mechanism for fault-tolerance and recovery based on the Safe Node Sequence Protocol (SNSP) to strengthen the system robustness, from which the correctness of a fault-tolerant prototype system is analyzed and verified. In order to verify the correctness of more than thirty failure modes, we have partitioned the complete protocol state machine into several subsystems, followed to the injection of corresponding fault classes into dedicated independent models. Experiments demonstrate that this method effectively reduces the size of overall state space, and verification results indicate that the protocol is able to recover from the fault model in a fault-tolerant system and continue to operate as errors occur.