Biblio
Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.
This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.
Service providers typically utilize Web APIs to enable the sharing of tenant data and resources with numerous third party web, cloud, and mobile applications. Security mechanisms such as OAuth 2.0 and API keys are commonly applied to manage authorization aspects of such integrations. However, these mechanisms impose functional and security drawbacks both for service providers and their users due to their static design, coarse and context insensitive capabilities, and weak interoperability. Implementing secure, feature-rich, and flexible data sharing services still poses a challenge that many providers face in the process of opening their interfaces to the public.To address these issues, we design the framework that allows pluggable and transparent externalization of authorization functionality for service providers and flexibility in defining and managing security aspects of resource sharing with third parties for their users. Our solution applies a holistic perspective that considers service descriptions, data fragments, security policies, as well as system interactions and states as an integrated space dynamically exposed and collaboratively accessed by agents residing across organizational boundaries.In this work we present design aspects of our contribution and illustrate its practical implementation by analyzing case scenario involving resource sharing of a popular service.
In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.
Security is a key concern in Internet of Things (IoT) designs. In a heterogeneous and complex environment, service providers and service requesters must trust each other. On-off attack is a sophisticated trust threat in which a malicious device can perform good and bad services randomly to avoid being rated as a low trust node. Some countermeasures demands prior level of trust knowing and time to classify a node behavior. In this paper, we introduce a Smart Middleware that automatically assesses the IoT resources trust, evaluating service providers attributes to protect against On-off attacks.
Internet of Things (IoT) distributed secure data management system is characterized by authentication, privacy policies to preserve data integrity. Multi-phase security and privacy policies ensure confidentiality and trust between the users and service providers. In this regard, we present a novel Two-phase Incentive-based Secure Key (TISK) system for distributed data management in IoT. The proposed system classifies the IoT user nodes and assigns low-level, high-level security keys for data transactions. Low-level secure keys are generic light-weight keys used by the data collector nodes and data aggregator nodes for trusted transactions. TISK phase-I Generic Service Manager (GSM-C) module verifies the IoT devices based on self-trust incentive and server-trust incentive levels. High-level secure keys are dedicated special purpose keys utilized by data manager nodes and data expert nodes for authorized transactions. TISK phase-II Dedicated Service Manager (DSM-C) module verifies the certificates issued by GSM-C module. DSM-C module further issues high-level secure keys to data manager nodes and data expert nodes for specific purpose transactions. Simulation results indicate that the proposed TISK system reduces the key complexity and key cost to ensure distributed secure data management in IoT network.
Traffic from mobile wireless networks has been growing at a fast pace in recent years and is expected to surpass wired traffic very soon. Service providers face significant challenges at such scales including providing seamless mobility, efficient data delivery, security, and provisioning capacity at the wireless edge. In the Mobility First project, we have been exploring clean slate enhancements to the network protocols that can inherently provide support for at-scale mobility and trustworthiness in the Internet. An extensible data plane using pluggable compute-layer services is a key component of this architecture. We believe these extensions can be used to implement in-network services to enhance mobile end-user experience by either off-loading work and/or traffic from mobile devices, or by enabling en-route service-adaptation through context-awareness (e.g., Knowing contemporary access bandwidth). In this work we present details of the architectural support for in-network services within Mobility First, and propose protocol and service-API extensions to flexibly address these pluggable services from end-points. As a demonstrative example, we implement an in network service that does rate adaptation when delivering video streams to mobile devices that experience variable connection quality. We present details of our deployment and evaluation of the non-IP protocols along with compute-layer extensions on the GENI test bed, where we used a set of programmable nodes across 7 distributed sites to configure a Mobility First network with hosts, routers, and in-network compute services.
Anonymous communications networks, such as Tor, help to solve the real and important problem of enabling users to communicate privately over the Internet. However, in doing so, anonymous communications networks introduce an entirely new problem for the service providers - such as websites, IRC networks or mail servers - with which these users interact, in particular, since all anonymous users look alike, there is no way for the service providers to hold individual misbehaving anonymous users accountable for their actions. Recent research efforts have focused on using anonymous blacklisting systems (which are sometimes called anonymous revocation systems) to empower service providers with the ability to revoke access from abusive anonymous users. In contrast to revocable anonymity systems, which enable some trusted third party to deanonymize users, anonymous blacklisting systems provide users with a way to authenticate anonymously with a service provider, while enabling the service provider to revoke access from any users that misbehave, without revealing their identities. In this paper, we introduce the anonymous blacklisting problem and survey the literature on anonymous blacklisting systems, comparing and contrasting the architecture of various existing schemes, and discussing the tradeoffs inherent with each design. The literature on anonymous blacklisting systems lacks a unified set of definitions, each scheme operates under different trust assumptions and provides different security and privacy guarantees. Therefore, before we discuss the existing approaches in detail, we first propose a formal definition for anonymous blacklisting systems, and a set of security and privacy properties that these systems should possess. We also outline a set of new performance requirements that anonymous blacklisting systems should satisfy to maximize their potential for real-world adoption, and give formal definitions for several optional features already supported by some sche- - mes in the literature.