Biblio
In medical human-robot interactions, trust plays an important role since for patients there may be more at stake than during other kinds of encounters with robots. In the current study, we address issues of trust in the interaction with a prototype of a therapeutic robot, the Universal RoboTrainer, in which the therapist records patient-specific tasks for the patient by means of kinesthetic guidance of the patients arm, which is connected to the robot. We carried out a user study with twelve pairs of participants who collaborate on recording a training program on the robot. We examine a) the degree with which participants identify the situation as uncomfortable or distressing, b) participants' own strategies to mitigate that stress, c) the degree to which the robot is held responsible for the problems occurring and the amount of agency ascribed to it, and d) when usability issues arise, what effect these have on participants' trust. We find signs of distress mostly in contexts with usability issues, as well as many verbal and kinesthetic mitigation strategies intuitively employed by the participants. Recommendations for robots to increase users' trust in kinesthetic interactions include the timely production of verbal cues that continuously confirm that everything is alright as well as increased contingency in the presentation of strategies for recovering from usability issues arising.
Over the past few years, virtual and mixed reality systems have evolved significantly yielding high immersive experiences. Most of the metaphors used for interaction with the virtual environment do not provide the same meaningful feedback, to which the users are used to in the real world. This paper proposes a cyber-glove to improve the immersive sensation and the degree of embodiment in virtual and mixed reality interaction tasks. In particular, we are proposing a cyber-glove system that tracks wrist movements, hand orientation and finger movements. It provides a decoupled position of the wrist and hand, which can contribute to a better embodiment in interaction and manipulation tasks. Additionally, the detection of the curvature of the fingers aims to improve the proprioceptive perception of the grasping/releasing gestures more consistent to visual feedback. The cyber-glove system is being developed for VR applications related to real estate promotion, where users have to go through divisions of the house and interact with objects and furniture. This work aims to assess if glove-based systems can contribute to a higher sense of immersion, embodiment and usability when compared to standard VR hand controller devices (typically button-based). Twenty-two participants tested the cyber-glove system against the HTC Vive controller in a 3D manipulation task, specifically the opening of a virtual door. Metric results showed that 83% of the users performed faster door pushes, and described shorter paths with their hands wearing the cyber-glove. Subjective results showed that all participants rated the cyber-glove based interactions as equally or more natural, and 90% of users experienced an equal or a significant increase in the sense of embodiment.
An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.