Biblio
We propose a crypto-aided Bayesian detection framework for detecting false data in short messages with low overhead. The proposed approach employs the Bayesian detection at the physical layer in parallel with a lightweight cryptographic detection, followed by combining the two detection outcomes. We develop the maximum a posteriori probability (MAP) rule for combining the cryptographic and Bayesian detection outcome, which minimizes the average probability of detection error. We derive the probability of false alarm and missed detection and discuss the improvement of detection accuracy provided by the proposed method.
A frequent claim that has not been validated is that signature based network intrusion detection systems (SNIDS) cannot detect zero-day attacks. This paper studies this property by testing 356 severe attacks on the SNIDS Snort, configured with an old official rule set. Of these attacks, 183 attacks are zero-days' to the rule set and 173 attacks are theoretically known to it. The results from the study show that Snort clearly is able to detect zero-days' (a mean of 17% detection). The detection rate is however on overall greater for theoretically known attacks (a mean of 54% detection). The paper then investigates how the zero-days' are detected, how prone the corresponding signatures are to false alarms, and how easily they can be evaded. Analyses of these aspects suggest that a conservative estimate on zero-day detection by Snort is 8.2%.