Biblio
The rate at which a secure key can be generated in a quantum key distribution (QKD) protocol is limited by the channel loss and the quantum bit-error rate (QBER). Increases to the QBER can stem from detector noise, channel noise, or the presence of an eavesdropper, Eve. Eve is capable of obtaining information of the unsecure key by performing an attack on the quantum channel or by listening to all discussion performed via a noiseless public channel. Conventionally a QKD protocol will perform the information reconciliation over the authenticated public channel, revealing the parity bits used to correct for any quantum bit errors. In this invited paper, the possibility of limiting the information revealed to Eve during the information reconciliation is considered. Using a covert communication channel for the transmission of the parity bits, secure key rates are possible at much higher QBERs. This is demonstrated through the simulation of a polarization based QKD system implementing the BB84 protocol, showing significant improvement of the SKRs over the conventional QKD protocols.
We present an object tracking framework which fuses multiple unstable video-based methods and supports automatic tracker initialization and termination. To evaluate our system, we collected a large dataset of hand-annotated 5-minute traffic surveillance videos, which we are releasing to the community. To the best of our knowledge, this is the first publicly available dataset of such long videos, providing a diverse range of real-world object variation, scale change, interaction, different resolutions and illumination conditions. In our comprehensive evaluation using this dataset, we show that our automatic object tracking system often outperforms state-of-the-art trackers, even when these are provided with proper manual initialization. We also demonstrate tracking throughput improvements of 5× or more vs. the competition.
In this paper, we introduce an optical network with cross-layer security, which can enhance security performance. In the transmitter, the user's data is encrypted at first. After that, based on optical encoding, physical layer encryption is implemented. In the receiver, after the corresponding optical decoding process, decryption algorithm is used to restore user's data. In this paper, the security performance has been evaluated quantitatively.
Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we evaluate various denoising filters with high edge-preserving potential for the reduction of speckle noise in 256 dermatological OCT B-scans. Our results show that the Enhanced Sigma Filter and the Block Matching 3-D (BM3D) as 2D denoising filters and the Wavelet Multiframe algorithm considering adjacent B-scans achieved the best results in terms of the enhancement quality metrics used. Our results suggest that a combination of 2D filtering followed by a wavelet based compounding algorithm may significantly reduce speckle, increasing signal-to-noise and contrast-to-noise ratios, without the need of extra acquisitions of the same frame.
We propose an optical security method for object authentication using photon-counting encryption implemented with phase encoded QR codes. By combining the full phase double-random-phase encryption with photon-counting imaging method and applying an iterative Huffman coding technique, we are able to encrypt and compress an image containing primary information about the object. This data can then be stored inside of an optically phase encoded QR code for robust read out, decryption, and authentication. The optically encoded QR code is verified by examining the speckle signature of the optical masks using statistical analysis. Optical experimental results are presented to demonstrate the performance of the system. In addition, experiments with a commercial Smartphone to read the optically encoded QR code are presented. To the best of our knowledge, this is the first report on integrating photon-counting security with optically phase encoded QR codes.
An abnormal behavior detection algorithm for surveillance is required to correctly identify the targets as being in a normal or chaotic movement. A model is developed here for this purpose. The uniqueness of this algorithm is the use of foreground detection with Gaussian mixture (FGMM) model before passing the video frames to optical flow model using Lucas-Kanade approach. Information of horizontal and vertical displacements and directions associated with each pixel for object of interest is extracted. These features are then fed to feed forward neural network for classification and simulation. The study is being conducted on the real time videos and some synthesized videos. Accuracy of method has been calculated by using the performance parameters for Neural Networks. In comparison of plain optical flow with this model, improved results have been obtained without noise. Classes are correctly identified with an overall performance equal to 3.4e-02 with & error percentage of 2.5.
Physical attacks against cryptographic devices typically take advantage of information leakage (e.g., side-channels attacks) or erroneous computations (e.g., fault injection attacks). Preventing or detecting these attacks has become a challenging task in modern cryptographic research. In this context intrinsic physical properties of integrated circuits, such as Physical(ly) Unclonable Functions (PUFs), can be used to complement classical cryptographic constructions, and to enhance the security of cryptographic devices. PUFs have recently been proposed for various applications, including anti-counterfeiting schemes, key generation algorithms, and in the design of block ciphers. However, currently only rudimentary security models for PUFs exist, limiting the confidence in the security claims of PUF-based security primitives. A useful model should at the same time (i) define the security properties of PUFs abstractly and naturally, allowing to design and formally analyze PUF-based security solutions, and (ii) provide practical quantification tools allowing engineers to evaluate PUF instantiations. In this paper, we present a formal foundation for security primitives based on PUFs. Our approach requires as little as possible from the physics and focuses more on the main properties at the heart of most published works on PUFs: robustness (generation of stable answers), unclonability (not provided by algorithmic solutions), and unpredictability. We first formally define these properties and then show that they can be achieved by previously introduced PUF instantiations. We stress that such a consolidating work allows for a meaningful security analysis of security primitives taking advantage of physical properties, becoming increasingly important in the development of the next generation secure information systems.