Visible to the public Biblio

Filters: Keyword is Noise measurement  [Clear All Filters]
2023-08-03
Brian, Gianluca, Faonio, Antonio, Obremski, Maciej, Ribeiro, João, Simkin, Mark, Skórski, Maciej, Venturi, Daniele.  2022.  The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free. IEEE Transactions on Information Theory. 68:8197–8227.
We show that the most common flavors of noisy leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to a small statistical simulation error and a slight loss in the leakage parameter. The latter holds true in particular for one of the most used noisy-leakage models, where the noisiness is measured using the conditional average min-entropy (Naor and Segev, CRYPTO’09 and SICOMP’12). Our reductions between noisy and bounded leakage are achieved in two steps. First, we put forward a new leakage model (dubbed the dense leakage model) and prove that dense leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to small statistical distance. Second, we show that the most common noisy-leakage models fall within the class of dense leakage, with good parameters. Third, we prove lower bounds on the amount of bounded leakage required for simulation with sub-constant error, showing that our reductions are nearly optimal. In particular, our results imply that useful general simulation of noisy leakage based on statistical distance and mutual information is impossible. We also provide a complete picture of the relationships between different noisy-leakage models. Our result finds applications to leakage-resilient cryptography, where we are often able to lift security in the presence of bounded leakage to security in the presence of noisy leakage, both in the information-theoretic and in the computational setting. Remarkably, this lifting procedure makes only black-box use of the underlying schemes. Additionally, we show how to use lower bounds in communication complexity to prove that bounded-collusion protocols (Kumar, Meka, and Sahai, FOCS’19) for certain functions do not only require long transcripts, but also necessarily need to reveal enough information about the inputs.
Conference Name: IEEE Transactions on Information Theory
2023-06-30
Subramanian, Rishabh.  2022.  Differential Privacy Techniques for Healthcare Data. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :95–100.
This paper analyzes techniques to enable differential privacy by adding Laplace noise to healthcare data. First, as healthcare data contain natural constraints for data to take only integral values, we show that drawing only integral values does not provide differential privacy. In contrast, rounding randomly drawn values to the nearest integer provides differential privacy. Second, when a variable is constructed using two other variables, noise must be added to only one of them. Third, if the constructed variable is a fraction, then noise must be added to its constituent private variables, and not to the fraction directly. Fourth, the accuracy of analytics following noise addition increases with the privacy budget, ϵ, and the variance of the independent variable. Finally, the accuracy of analytics following noise addition increases disproportionately with an increase in the privacy budget when the variance of the independent variable is greater. Using actual healthcare data, we provide evidence supporting the two predictions on the accuracy of data analytics. Crucially, to enable accuracy of data analytics with differential privacy, we derive a relationship to extract the slope parameter in the original dataset using the slope parameter in the noisy dataset.
2023-04-14
Ma, Xiao, Wang, Yixin, Zhu, Tingting.  2022.  A New Framework for Proving Coding Theorems for Linear Codes. 2022 IEEE International Symposium on Information Theory (ISIT). :2768–2773.

A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.

ISSN: 2157-8117

2023-03-31
Li, Yunchen, Luo, Da.  2022.  Adversarial Audio Detection Method Based on Transformer. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :77–82.
Speech recognition technology has been applied to all aspects of our daily life, but it faces many security issues. One of the major threats is the adversarial audio examples, which may tamper the recognition results of the acoustic speech recognition system (ASR). In this paper, we propose an adversarial detection framework to detect adversarial audio examples. The method is based on the transformer self-attention mechanism. Spectrogram features are extracted from the audio and divided into patches. Position information are embedded and then fed into transformer encoder. Experimental results show that the method achieves good performance with the detection accuracy of above 96.5% under the white-box attacks and blackbox attacks, and noisy circumstances. Even when detecting adversarial examples generated by the unknown attacks, it also achieves satisfactory results.
2023-02-03
Ouamour, S., Sayoud, H..  2022.  Computational Identification of Author Style on Electronic Libraries - Case of Lexical Features. 2022 5th International Symposium on Informatics and its Applications (ISIA). :1–4.
In the present work, we intend to present a thorough study developed on a digital library, called HAT corpus, for a purpose of authorship attribution. Thus, a dataset of 300 documents that are written by 100 different authors, was extracted from the web digital library and processed for a task of author style analysis. All the documents are related to the travel topic and written in Arabic. Basically, three important rules in stylometry should be respected: the minimum document size, the same topic for all documents and the same genre too. In this work, we made a particular effort to respect those conditions seriously during the corpus preparation. That is, three lexical features: Fixed-length words, Rare words and Suffixes are used and evaluated by using a centroid based Manhattan distance. The used identification approach shows interesting results with an accuracy of about 0.94.
2023-02-02
Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui.  2022.  Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method. 2022 Power System and Green Energy Conference (PSGEC). :848–852.
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
2022-10-20
Alexan, Wassim, Mamdouh, Eyad, Elkhateeb, Abdelrahman, Al-Seba'ey, Fahd, Amr, Ziad, Khalil, Hana.  2021.  Securing Sensitive Data Through Corner Filters, Chaotic Maps and LSB Embedding. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :359—364.
This paper proposes 2 multiple layer message security schemes. Information security is carried out through the implementation of cryptography, steganography and image processing techniques. In both schemes, the sensitive data is first encrypted by employing a chaotic function. In the first proposed scheme, LSB steganography is then applied to 2D slices of a 3D image. In the second proposed scheme, a corner detection filter is first applied to the 2D slices of a 3D image, then LSB embedding is carried out in those corner-detected pixels. The number of neighboring pixels used for corner detection is varied and its effect is noted. Performance of the proposed schemes is numerically evaluated using a number of metrics, including the mean squared error (MSE), the peak signal to noise ratio (PSNR), the structure similarity index measure (SSIM), the normalized cross-correlation (NCC), the image fidelity (IF), as well as the image difference (ID). The proposed schemes exhibit superior payload capacity and security in comparison to their counterparts from the literature.
2022-05-24
Fazea, Yousef, Mohammed, Fathey, Madi, Mohammed, Alkahtani, Ammar Ahmed.  2021.  Review on Network Function Virtualization in Information-Centric Networking. 2021 International Conference of Technology, Science and Administration (ICTSA). :1–6.
Network function virtualization (NFV / VNF) and information-centric networking (ICN) are two trending technologies that have attracted expert's attention. NFV is a technique in which network functions (NF) are decoupling from commodity hardware to run on to create virtual communication services. The virtualized class nodes can bring several advantages such as reduce Operating Expenses (OPEX) and Capital Expenses (CAPEX). On the other hand, ICN is a technique that breaks the host-centric paradigm and shifts the focus to “named information” or content-centric. ICN provides highly efficient content retrieval network architecture where popular contents are cached to minimize duplicate transmissions and allow mobile users to access popular contents from caches of network gateways. This paper investigates the implementation of NFV in ICN. Besides, reviewing and discussing the weaknesses and strengths of each architecture in a critical analysis manner of both network architectures. Eventually, highlighted the current issues and future challenges of both architectures.
2022-05-19
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2021.  A Machine Learning Approach to Detection of Critical Alerts from Imbalanced Multi-Appliance Threat Alert Logs. 2021 IEEE International Conference on Big Data (Big Data). :2119–2127.
The extraordinary number of alerts generated by network intrusion detection systems (NIDS) can desensitize security analysts tasked with incident response. Security information and event management systems (SIEMs) perform some rudimentary automation but cannot replicate the decision-making process of a skilled analyst. Machine learning and artificial intelligence (AI) can detect patterns in data with appropriate training. In practice, the majority of the alert data comprises false alerts, and true alerts form only a small proportion. Consequently, a naive engine that classifies all security alerts into the majority class can yield a superficial high accuracy close to 100%. Without any correction for the class imbalance, the false alerts will dominate algorithmic predictions resulting in poor generalization performance. We propose a machine-learning approach to address the class imbalance problem in multi-appliance security alert data and automate the security alert analysis process performed in security operations centers (SOCs). We first used the neighborhood cleaning rule (NCR) to identify and remove ambiguous, noisy, and redundant false alerts. Then, we applied the support vector machine synthetic minority oversampling technique (SVMSMOTE) to generate synthetic training true alerts. Finally, we fit and evaluated the decision tree and random forest classifiers. In the experiments, using alert data from eight security appliances, we demonstrated that the proposed method can significantly reduce the need for manual auditing, decreasing the number of uninspected alerts and achieving a performance of 99.524% in recall.
2022-04-19
Zhang, Qiaosheng, Tan, Vincent Y. F..  2021.  Covert Identification Over Binary-Input Discrete Memoryless Channels. IEEE Transactions on Information Theory. 67:5387–5403.
This paper considers the covert identification problem in which a sender aims to reliably convey an identification (ID) message to a set of receivers via a binary-input discrete memoryless channel (BDMC), and simultaneously to guarantee that the communication is covert with respect to a warden who monitors the communication via another independent BDMC. We prove a square-root law for the covert identification problem. This states that an ID message of size exp(exp($\Theta$($\surd$ n)) can be transmitted over n channel uses. We then characterize the exact pre-constant in the $\Theta$($\cdot$) notation. This constant is referred to as the covert identification capacity. We show that it equals the recently developed covert capacity in the standard covert communication problem, and somewhat surprisingly, the covert identification capacity can be achieved without any shared key between the sender and receivers. The achievability proof relies on a random coding argument with pulse-position modulation (PPM), coupled with a second stage which performs code refinements. The converse proof relies on an expurgation argument as well as results for channel resolvability with stringent input constraints.
Conference Name: IEEE Transactions on Information Theory
2022-03-02
Sargolzaei, Arman.  2021.  A Secure Control Design for Networked Control System with Nonlinear Dynamics under False-Data-Injection Attacks. 2021 American Control Conference (ACC). :2693–2699.

In a centralized Networked Control System (NCS), all agents share local data with a central processing unit that generates control commands for agents. The use of a communication network between the agents gives NCSs a distinct advantage in efficiency, design cost, and simplicity. However, this benefit comes at the expense of vulnerability to a range of cyber-physical attacks. Recently, novel defense mechanisms to counteract false data injection (FDI) attacks on NCSs have been developed for agents with linear dynamics but have not been thoroughly investigated for NCSs with nonlinear dynamics. This paper proposes an FDI attack mitigation strategy for NCSs composed of agents with nonlinear dynamics under disturbances and measurement noises. The proposed algorithm uses both learning and model-based approaches to estimate agents'states for FDI attack mitigation. A neural network is used to model uncertain dynamics and estimate the effect of FDI attacks. The controller and estimator are designed based on Lyapunov stability analysis. A simulation of robots with Euler-Lagrange dynamics is considered to demonstrate the developed controller's performance to respond to FDI attacks in real-time.

2022-01-25
Goh, Gary S. W., Lapuschkin, Sebastian, Weber, Leander, Samek, Wojciech, Binder, Alexander.  2021.  Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution. 2020 25th International Conference on Pattern Recognition (ICPR). :4949–4956.
Integrated Gradients as an attribution method for deep neural network models offers simple implementability. However, it suffers from noisiness of explanations which affects the ease of interpretability. The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method. In this paper, we present SmoothTaylor as a novel theoretical concept bridging Integrated Gradients and SmoothGrad, from the Taylor's theorem perspective. We apply the methods to the image classification problem, using the ILSVRC2012 ImageNet object recognition dataset, and a couple of pretrained image models to generate attribution maps. These attribution maps are empirically evaluated using quantitative measures for sensitivity and noise level. We further propose adaptive noising to optimize for the noise scale hyperparameter value. From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.
2021-12-20
Deng, Yingjie, Zhao, Dingxuan, Liu, Tao.  2021.  Self-Triggered Tracking Control of Underactuated Surface Vessels with Stochastic Noise. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :266–273.
This note studies self-triggered tracking control of underactuated surface vessels considering both unknown model dynamics and stochastic noise, where the measured states in the sensors are intermittently transmitted to the controller decided by the triggering condition. While the multi-layer neural network (NN) serves to approximate the unknown model dynamics, a self-triggered adaptive neural model is fabricated to direct the design of control laws. This setup successfully solves the ``jumps of virtual control laws'' problem, which occurs when combining the event-triggered control (ETC) with the backstepping method, seeing [1]–[4]. Moreover, the adaptive model can act as the filter of states, such that the complicated analysis and control design to eliminate the detrimental influence of stochastic noise is no longer needed. Released from the continuous monitoring of the controller, the devised triggering condition is located in the sensors and designed to meet the requirement of stability. All the estimation errors and the tracking errors are proved to be exponentially mean-square (EMS) bounded. Finally, a numerical experiment is conducted to corroborate the proposed strategy.
2021-11-08
Sun, Chen, Cheng, Liye, Wang, Liwei, Huang, Yun.  2020.  Hardware Trojan Detection Based on SRC. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :472–475.
The security of integrated circuits (IC) plays a very significant role on military, economy, communication and other industries. Due to the globalization of the integrated circuit (IC) from design to manufacturing process, the IC chip is vulnerable to be implanted malicious circuit, which is known as hardware Trojan (HT). When the HT is activated, it will modify the functionality, reduce the reliability of IC, and even leak confidential information about the system and seriously threatens national security. The HT detection theory and method is hotspot in the security of integrated circuit. However, most methods are focusing on the simulated data. Moreover, the measurement data of the real circuit are greatly affected by the measurement noise and process disturbances and few methods are available with small size of the Trojan circuit. In this paper, the problem of detection was cast as signal representation among multiple linear regression and sparse representation-based classifier (SRC) were first applied for Trojan detection. We assume that the training samples from a single class do lie on a subspace, and the test samples can be represented by the single class. The proposed SRC HT detection method on real integrated circuit shows high accuracy and efficiency.
2021-08-11
Alsubaie, Fheed, Al-Akhras, Mousa, Alzahrani, Hamdan A..  2020.  Using Machine Learning for Intrusion Detection System in Wireless Body Area Network. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :100–104.
This paper introduces a technique that enhances the capabilities of an intrusion detection system (IDS) in a wireless body area network (WBAN). This technique involves adopting two known machine-learning algorithms: artificial neural network (ANN) and the J48 form of decision trees. The enhanced technique reduces the security threats to a WBAN, such as denial-of-service (DoS) attacks. It is essential to manage noise, which might affect the data gathered by the sensors. In this paper, noise in data is measured because it can affect the accuracy of the machine learning algorithms and demonstrate the level of noise at which the machine-learning model can be trusted. The results show that J48 is the best model when there is no noise, with an accuracy reaching 99.66%, as compared to the ANN algorithm. However, with noisy datasets, ANN shows more tolerance to noise.
2021-07-27
Sengupta, Poushali, Paul, Sudipta, Mishra, Subhankar.  2020.  BUDS: Balancing Utility and Differential Privacy by Shuffling. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Balancing utility and differential privacy by shuffling or BUDS is an approach towards crowd sourced, statistical databases, with strong privacy and utility balance using differential privacy theory. Here, a novel algorithm is proposed using one-hot encoding and iterative shuffling with the loss estimation and risk minimization techniques, to balance both the utility and privacy. In this work, after collecting one-hot encoded data from different sources and clients, a step of novel attribute shuffling technique using iterative shuffling (based on the query asked by the analyst) and loss estimation with an updation function and risk minimization produces a utility and privacy balanced differential private report. During empirical test of balanced utility and privacy, BUDS produces ε = 0.02 which is a very promising result. Our algorithm maintains a privacy bound of ε = ln[t/((n1-1)S)] and loss bound of c'\textbackslashtextbareln[t/((n1-1)S)]-1\textbackslashtextbar.
Kim, Hyeji, Jiang, Yihan, Kannan, Sreeram, Oh, Sewoong, Viswanath, Pramod.  2020.  Deepcode: Feedback Codes via Deep Learning. IEEE Journal on Selected Areas in Information Theory. 1:194—206.
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly outperforms state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability and achieve a 3dB gain in terms of SNR. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, and (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.
2021-06-30
Wang, Chenguang, Tindemans, Simon, Pan, Kaikai, Palensky, Peter.  2020.  Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
2021-05-13
Bansal, Naman, Agarwal, Chirag, Nguyen, Anh.  2020.  SAM: The Sensitivity of Attribution Methods to Hyperparameters. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :11–21.
Attribution methods can provide powerful insights into the reasons for a classifier's decision. We argue that a key desideratum of an explanation method is its robustness to input hyperparameters which are often randomly set or empirically tuned. High sensitivity to arbitrary hyperparameter choices does not only impede reproducibility but also questions the correctness of an explanation and impairs the trust of end-users. In this paper, we provide a thorough empirical study on the sensitivity of existing attribution methods. We found an alarming trend that many methods are highly sensitive to changes in their common hyperparameters e.g. even changing a random seed can yield a different explanation! Interestingly, such sensitivity is not reflected in the average explanation accuracy scores over the dataset as commonly reported in the literature. In addition, explanations generated for robust classifiers (i.e. which are trained to be invariant to pixel-wise perturbations) are surprisingly more robust than those generated for regular classifiers.
2021-04-08
Tyagi, H., Vardy, A..  2015.  Universal Hashing for Information-Theoretic Security. Proceedings of the IEEE. 103:1781–1795.
The information-theoretic approach to security entails harnessing the correlated randomness available in nature to establish security. It uses tools from information theory and coding and yields provable security, even against an adversary with unbounded computational power. However, the feasibility of this approach in practice depends on the development of efficiently implementable schemes. In this paper, we review a special class of practical schemes for information-theoretic security that are based on 2-universal hash families. Specific cases of secret key agreement and wiretap coding are considered, and general themes are identified. The scheme presented for wiretap coding is modular and can be implemented easily by including an extra preprocessing layer over the existing transmission codes.
2021-03-15
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

2021-02-08
Xu, P., Miao, Q., Liu, T., Chen, X..  2015.  Multi-direction Edge Detection Operator. 2015 11th International Conference on Computational Intelligence and Security (CIS). :187—190.

Due to the noise in the images, the edges extracted from these noisy images are always discontinuous and inaccurate by traditional operators. In order to solve these problems, this paper proposes multi-direction edge detection operator to detect edges from noisy images. The new operator is designed by introducing the shear transformation into the traditional operator. On the one hand, the shear transformation can provide a more favorable treatment for directions, which can make the new operator detect edges in different directions and overcome the directional limitation in the traditional operator. On the other hand, all the single pixel edge images in different directions can be fused. In this case, the edge information can complement each other. The experimental results indicate that the new operator is superior to the traditional ones in terms of the effectiveness of edge detection and the ability of noise rejection.

2020-09-21
Akbay, Abdullah Basar, Wang, Weina, Zhang, Junshan.  2019.  Data Collection from Privacy-Aware Users in the Presence of Social Learning. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :679–686.
We study a model where a data collector obtains data from users through a payment mechanism to learn the underlying state from the elicited data. The private signal of each user represents her individual knowledge about the state. Through social interactions, each user can also learn noisy versions of her friends' signals, which is called group signals. Based on both her private signal and group signals, each user makes strategic decisions to report a privacy-preserved version of her data to the data collector. We develop a Bayesian game theoretic framework to study the impact of social learning on users' data reporting strategies and devise the payment mechanism for the data collector accordingly. Our findings reveal that, the Bayesian-Nash equilibrium can be in the form of either a symmetric randomized response (SR) strategy or an informative non-disclosive (ND) strategy. A generalized majority voting rule is applied by each user to her noisy group signals to determine which strategy to follow. When a user plays the ND strategy, she reports privacy-preserving data completely based on her group signals, independent of her private signal, which indicates that her privacy cost is zero. Both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation at a given payment budget. We derive bounds on the minimum total payment required to achieve a given level of state estimation accuracy.
2020-09-11
Shekhar, Heemany, Moh, Melody, Moh, Teng-Sheng.  2019.  Exploring Adversaries to Defend Audio CAPTCHA. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1155—1161.
CAPTCHA is a web-based authentication method used by websites to distinguish between humans (valid users) and bots (attackers). Audio captcha is an accessible captcha meant for the visually disabled section of users such as color-blind, blind, near-sighted users. Firstly, this paper analyzes how secure current audio captchas are from attacks using machine learning (ML) and deep learning (DL) models. Each audio captcha is made up of five, seven or ten random digits[0-9] spoken one after the other along with varying background noise throughout the length of the audio. If the ML or DL model is able to correctly identify all spoken digits and in the correct order of occurance in a single audio captcha, we consider that captcha to be broken and the attack to be successful. Throughout the paper, accuracy refers to the attack model's success at breaking audio captchas. The higher the attack accuracy, the more unsecure the audio captchas are. In our baseline experiments, we found that attack models could break audio captchas that had no background noise or medium background noise with any number of spoken digits with nearly 99% to 100% accuracy. Whereas, audio captchas with high background noise were relatively more secure with attack accuracy of 85%. Secondly, we propose that the concepts of adversarial examples algorithms can be used to create a new kind of audio captcha that is more resilient towards attacks. We found that even after retraining the models on the new adversarial audio data, the attack accuracy remained as low as 25% to 36% only. Lastly, we explore the benefits of creating adversarial audio captcha through different algorithms such as Basic Iterative Method (BIM) and deepFool. We found that as long as the attacker has less than 45% sample from each kinds of adversarial audio datasets, the defense will be successful at preventing attacks.
2020-09-08
Mufassa, Fauzil Halim, Anwar, Khoirul.  2019.  Extrinsic Information Transfer (EXIT) Analysis for Short Polar Codes. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–6.

Ze the quality of channels into either completely noisy or noieseless channels. This paper presents extrinsic information transfer (EXIT) analysis for iterative decoding of Polar codes to reveal the mechanism of channel transformation. The purpose of understanding the transformation process are to comprehend the placement process of information bit and frozen bit and to comprehend the security standard of Polar codes. Mutual information derived based on the concept of EXIT chart for check nodes and variable nodes of low density parity check (LDPC) codes and applied to Polar codes. This paper explores the quality of the polarized channels in finite blocklength. The finite block-length is of our interest since in the fifth telecommunications generation (5G) the block length is limited. This paper reveals the EXIT curve changes of Polar codes and explores the polarization characteristics, thus, high value of mutual informations for frozen bit are needed to be detectable. If it is the other way, the error correction capability of Polar codes would be drastically decreases. These results are expected to be a reference for developments of Polar codes for 5G technologies and beyond.