Biblio
Modern software development frequently uses third-party packages, raising the concern of supply chain security attacks. Many attackers target popular package managers, like npm, and their users with supply chain attacks. In 2021 there was a 650% year-on-year growth in security attacks by exploiting Open Source Software's supply chain. Proactive approaches are needed to predict package vulnerability to high-risk supply chain attacks. The goal of this work is to help software developers and security specialists in measuring npm supply chain weak link signals to prevent future supply chain attacks by empirically studying npm package metadata.
In this paper, we analyzed the metadata of 1.63 million JavaScript npm packages. We propose six signals of security weaknesses in a software supply chain, such as the presence of install scripts, maintainer accounts associated with an expired email domain, and inactive packages with inactive maintainers. One of our case studies identified 11 malicious packages from the install scripts signal. We also found 2,818 maintainer email addresses associated with expired domains, allowing an attacker to hijack 8,494 packages by taking over the npm accounts. We obtained feedback on our weak link signals through a survey responded to by 470 npm package developers. The majority of the developers supported three out of our six proposed weak link signals. The developers also indicated that they would want to be notified about weak links signals before using third-party packages. Additionally, we discussed eight new signals suggested by package developers.
The aim of this study is to determine the current challenges related to security and trust issues in digital supply chains. The development of information and communication technologies (ICT) has improved the efficiency of supply chains, while creating new vulnerabilities and increasing the likelihood of security threats. Previous studies lack the physical security aspect, so the emphasis is on the security of cyber-physical systems. In order to achieve the goal of the study, traditional and digital supply chains, their security risks and main differences were examined. A security framework for cyber-physical risks in digital supply chains was developed.
Quality assurance and food safety are the most problem that the consumers are special care. To solve this problem, the enterprises must improve their food supply chain management system. In addition to tracking and storing orders and deliveries, it also ensures transparency and traceability of food production and transportation. This is a big challenge that the food supply chain system using the client-server model cannot meet with the requirements. Blockchain was first introduced to provide distributed records of digital currency exchanges without reliance on centralized management agencies or financial institutions. Blockchain is a disruptive technology that can improve supply chain related transactions, enable to access data permanently, data security, and provide a distributed database. In this paper, we propose a method to design a food supply chain management system base on Blockchain technology that is capable of bringing consumers’ trust in food traceability as well as providing a favorable supply and transaction environment. Specifically, we design a system architecture that is capable of controlling and tracking the entire food supply chain, including production, processing, transportation, storage, distribution, and retail. We propose the KDTrace system model and the Channel of KDTrace network model. The Smart contract between the organizations participating in the transaction is implemented in the Channel of KDTrace network model. Therefore, our supply chain system can decrease the problem of data explosion, prevent data tampering and disclosure of sensitive information. We have built a prototype based on Hyperledger Fabric Blockchain. Through the prototype, we demonstrated the effectiveness of our method and the suitability of the use cases in a supply chain. Our method that uses Blockchain technology can improve efficiency and security of the food supply chain management system compared with traditional systems, which use a clientserver model.
Cyber supply chain (CSC) security cost effectiveness should be the first and foremost decision to consider when integrating various networks in supplier inbound and outbound chains. CSC systems integrate different organizational network systems nodes such as SMEs and third-party vendors for business processes, information flows, and delivery channels. Adversaries are deploying various attacks such as RAT and Island-hopping attacks to penetrate, infiltrate, manipulate and change delivery channels. However, most businesses fail to invest adequately in security and do not consider analyzing the long term benefits of that to monitor and audit third party networks. Thus, making cost benefit analysis the most overriding factor. The paper explores the cost-benefit analysis of investing in cyber supply chain security to improve security. The contribution of the paper is threefold. First, we consider the various existing cybersecurity investments and the supply chain environment to determine their impact. Secondly, we use the NPV method to appraise the return on investment over a period of time. The approach considers other methods such as the Payback Period and Internal Rate of Return to analyze the investment appraisal decisions. Finally, we propose investment options that ensure CSC security performance investment appraisal, ROI, and business continuity. Our results show that NVP can be used for cost-benefit analysis and to appraise CSC system security to ensure business continuity planning and impact assessment.
Increasing consumer experience and companies inner quality presents a direct demand of different requirements on supply chain traceability. Typically, existing solutions have separate data storages which eventually provide limited support when multiple individuals are included. Therefore, the block-chain-based methods are utilized to defeat these deficiencies by generating digital illustrations of real products to following several objects at the same time. Nevertheless, they actually cannot identify the change of products in manufacturing methods. The connection between components included in the production decreased, whereby the ability to follow a product’s origin reduced consequently. In this paper, a methodology is recommended which involves using a Block-chain in Supply Chain Traceability, to solve the issues of manipulations and changes in data and product source. The method aims to improve the product’s origin transparency. Block-chain technology produces a specific method of storing data into a ledger, which is raised on many end-devices such as servers or computers. Unlike centralized systems, the records of the present system are encrypted and make it difficult to be manipulated. Accordingly, this method manages the product’s traceability changes. The recommended system is performed for the cheese supply chain. The result were found to be significant in terms of increasing food security and distributors competition.
In recent years, Counterfeit goods play a vital role in product manufacturing industries. This Phenomenon affects the sales and profit of the companies. To ensure the identification of real products throughout the supply chain, a functional block chain technology used for preventing product counterfeiting. By using a block chain technology, consumers do not need to rely on the trusted third parties to know the source of the purchased product safely. Any application that uses block chain technology as a basic framework ensures that the data content is “tamper-resistant”. In view of the fact that a block chain is the decentralized, distributed and digital ledger that stores transactional records known as blocks of the public in several databases known as chain across many networks. Therefore, any involved block cannot be changed in advance, without changing all subsequent block. In this paper, counterfeit products are detected using barcode reader, where a barcode of the product linked to a Block Chain Based Management (BCBM) system. So the proposed system may be used to store product details and unique code of that product as blocks in database. It collects the unique code from the customer and compares the code against entries in block chain database. If the code matches, it will give notification to the customer, otherwise it gets information from the customer about where they bought the product to detect counterfeit product manufacturer.
The supply chain has been much developed with the internet technology being used in the business world. Some issues are becoming more and more evident than before in the course of the fast evolution of the supply chain. Among these issues, the remarkable problems include low efficiency of communication, insufficient operational outcomes and lack of the credit among the participants in the whole chain. The main reasons to cause these problems lie in the isolated information unable to be traced and in the unclear responsibility, etc. In recent years, the block chain technology has been growing fast. Being decentralized, traceable and unable to be distorted, the block chain technology is well suitable for solving the problems existing in the supply chain. Therefore, the paper first exposes the traditional supply chain mode and the actual situation of the supply chain management. Then it explains the block chain technology and explores the application & effects of the block chain technology in the traditional supply chain. Next, a supply chain style is designed on the base of the block chain technology. Finally the potential benefits of the remolded supply chain are foreseen if it is applied in the business field.
With the rapid development of IoT in recent years, IoT is increasingly being used as an endpoint of supply chains. In general, as the majority of data is now being stored and shared over the network, information security is an important issue in terms of secure supply chain management. In response to cyber security breaches and threats, there has been much research and development on the secure storage and transfer of data over the network. However, there is a relatively limited amount of research and proposals for the security of endpoints, such as IoT linked in the supply chain network. In addition, it is difficult to ensure reliability for IoT itself due to a lack of resources such as CPU power and storage. Ensuring the reliability of IoT is essential when IoT is integrated into the supply chain. Thus, in order to secure the supply chain, we need to improve the reliability of IoT, the endpoint of the supply chain. In this work, we examine the use of IoT gateways, client certificates, and IdP as methods to compensate for the lack of IoT resources. The results of our qualitative evaluation demonstrate that using the IdP method is the most effective.
Focusing on security management for supply chain under emergencies, this paper analyzes the characteristics of supply chain risk, clarifies the relationship between business continuity management and security management for supply chain, organizational resilience and security management for supply chain separately, so as to propose suggestions to promote the realization of security management for supply chain combined these two concepts, which is of guiding significance for security management for supply chain and quality assurance of products and services under emergencies.
Information security of logistics services. Information security of logistics services is understood as a complex activity aimed at using information and means of its processing in order to increase the level of protection and normal functioning of the object's information environment. At the same time the main recommendations for ensuring information security of logistics processes include: logistics support of processes for ensuring the security of information flows of the enterprise; assessment of the quality and reliability of elements, reliability and efficiency of obtaining information about the state of logistics processes. However, it is possible to assess the level of information security within the organization's controlled part of the supply chain through levels and indicators. In this case, there are four levels and elements of information security of supply chains.