Biblio
Clone product injection into supply chains causes serious problems for industry and customers. Many mechanisms have been introduced to detect clone products in supply chains which make use of RFID technologies. This article gives an overview of these mechanisms, categorizes them by hardware change requirements, and compares their attributes.
The software supply chain is a source of cybersecurity risk for many commercial and government organizations. Public data may be used to inform automated tools for detecting software supply chain risk during continuous integration and deployment. We link data from the National Vulnerability Database (NVD) with open version control data for the open source project OpenSSL, a widely used secure networking library that made the news when a significant vulnerability, Heartbleed, was discovered in 2014. We apply the Alhazmi-Malaiya Logistic (AML) model for software vulnerability discovery to this case. This model predicts a sigmoid cumulative vulnerability discovery function over time. Some versions of OpenSSL do not conform to the predictions of the model because they contain a temporary plateau in the cumulative vulnerability discovery plot. This temporary plateau feature is an empirical signature of a security failure mode that may be useful in future studies of software supply chain risk.
Maintaining the security and integrity of our food supply chain has emerged as a critical need. In this paper, we describe a novel authentication approach that can significantly improve the security of the food supply chain. It relies on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of packaged food products. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment such that signal properties are influenced by the manufacturing process, thus generating a manufacturer-specific watermark or intrinsic tag for the product. Such tags enable us to uniquely characterize and authenticate products of identical composition but from different manufacturers based on their NQR signal parameters. These intrinsic tags can be used to verify the integrity of a product and trace it through the supply chain. We apply a support vector machine (SVM)-based classification approach that trains the SVM with measured NQR parameters and then authenticates food products by checking their test responses. Measurement on an example substance using semi-custom hardware shows promising results (95% classification accuracy) which can be further improved with improved instrumentation.
The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines.
This year, software development teams around the world are consuming BILLIONS of open source and third-party components. The good news: they are accelerating time to market. The bad news: 1 in 17 components they are using include known security vulnerabilities. In this talk, I will describe what Sonatype, the company behind The Central Repository that supports Apache Maven, has learned from analyzing how thousands of applications use open source components. I will also discuss how organizations like Mayo Clinic, Exxon, Capital One, the U.S. FDA and Intuit are utilizing the principles of software supply chain automation to improve application security and how organizations can balance the need for speed with quality and security early in the development cycle.
We present a process for detection of IP theft in VLSI devices that exploits the internal test scan chains. The IP owner learns implementation details in the suspect device to find evidence of the theft, while the top level function is public. The scan chains supply direct access to the internal registers in the device, thus making it possible to learn the logic functions of the internal combinational logic chunks. Our work introduces an innovative way of applying Boolean function analysis techniques for learning digital circuits with the goal of IP theft detection. By using Boolean function learning methods, the learner creates a partial dependency graph of the internal flip-flops. The graph is further partitioned using the SNN graph clustering method, and individual blocks of combinational logic are isolated. These blocks can be matched with known building blocks that compose the original function. This enables reconstruction of the function implementation to the level of pipeline structure. The IP owner can compare the resulting structure with his own implementation to confirm or refute that an IP violation has occurred. We demonstrate the power of the presented approach with a test case of an open source Bitcoin SHA-256 accelerator, containing more than 80,000 registers. With the presented method we discover the microarchitecture of the module, locate all the main components of the SHA-256 algorithm, and learn the module's flow control.
Given the increasing complexity of modern electronics and the cost of fabrication, entities from around the globe have become more heavily involved in all phases of the electronics supply chain. In this environment, hardware Trojans (i.e., malicious modifications or inclusions made by untrusted third parties) pose major security concerns, especially for those integrated circuits (ICs) and systems used in critical applications and cyber infrastructure. While hardware Trojans have been explored significantly in academia over the last decade, there remains room for improvement. In this article, we examine the research on hardware Trojans from the last decade and attempt to capture the lessons learned. A comprehensive adversarial model taxonomy is introduced and used to examine the current state of the art. Then the past countermeasures and publication trends are categorized based on the adversarial model and topic. Through this analysis, we identify what has been covered and the important problems that are underinvestigated. We also identify the most critical lessons for those new to the field and suggest a roadmap for future hardware Trojan research.
With the advent of globalization in the semiconductor industry, it is necessary to prevent unauthorized usage of third-party IPs (3PIPs), cloning and unwanted modification of 3PIPs, and unauthorized production of ICs. Due to the increasing complexity of ICs, system-on-chip (SoC) designers use various 3PIPs in their design to reduce time-to-market and development costs, which creates a trust issue between the SoC designer and the IP owners. In addition, as the ICs are fabricated around the globe, the SoC designers give fabrication contracts to offshore foundries to manufacture ICs and have little control over the fabrication process, including the total number of chips fabricated. Similarly, the 3PIP owners lack control over the number of fabricated chips and/or the usage of their IPs in an SoC. Existing research only partially addresses the problems of IP piracy and IC overproduction, and to the best of our knowledge, there is no work that considers IP overuse. In this article, we present a comprehensive solution for preventing IP piracy and IC overproduction by assuring forward trust between all entities involved in the SoC design and fabrication process. We propose a novel design flow to prevent IC overproduction and IP overuse. We use an existing logic encryption technique to obfuscate the netlist of an SoC or a 3PIP and propose a modification to enable manufacturing tests before the activation of chips which is absolutely necessary to prevent overproduction. We have used asymmetric and symmetric key encryption, in a fashion similar to Pretty Good Privacy (PGP), to transfer keys from the SoC designer or 3PIP owners to the chips. In addition, we also propose to attach an IP digest (a cryptographic hash of the entire IP) to the header of an IP to prevent modification of the IP by the SoC designers. We have shown that our approach is resistant to various attacks with the cost of minimal area overhead.
There is a growing interest in modeling and predicting the behavior of financial systems and supply chains. In this paper, we focus on the the analysis of the resMBS supply chain; it is associated with the US residential mortgage backed securities and subprime mortgages that were critical in the 2008 US financial crisis. We develop models based on financial institutions (FI), and their participation described by their roles (Role) on financial contracts (FC). Our models are based on an intuitive assumption that FIs will form communities within an FC, and FIs within a community are more likely to collaborate with other FIs in that community, and play the same role, in another FC. Inspired by the Latent Dirichlet Allocation (LDA) and topic models, we develop two probabilistic financial community models. In FI-Comm, each FC (document) is a mix of topics where a topic is a distribution over FIs (words). In Role-FI-Comm, each topic is a distribution over Role-FI pairs (words). Experimental results over 5000+ financial prospecti demonstrate the effectiveness of our models.
Understanding the behavior of complex financial supply chains is usually difficult due to a lack of data capturing the interactions between financial institutions (FIs) and the roles that they play in financial contracts (FCs). resMBS is an example supply chain corresponding to the US residential mortgage backed securities that were critical in the 2008 US financial crisis. In this paper, we describe the process of creating the resMBS graph dataset from financial prospectus. We use the SystemT rule-based text extraction platform to develop two tools, ORG NER and Dict NER, for named entity recognition of financial institution (FI) names. The resMBS graph comprises a set of FC nodes (each prospectus) and the corresponding FI nodes that are extracted from the prospectus. A Role-FI extractor matches a role keyword such as originator, sponsor or servicer, with FI names. We study the performance of the Role-FI extractor, and ORG NER and Dict NER, in constructing the resMBS dataset. We also present preliminary results of a clustering based analysis to identify financial communities and their evolution in the resMBS financial supply chain.
In this presentation, I describe how the SEI's Security Engineering Risk Analysis (SERA) method provides a structure that connects desired system functionality with the underlying software to evaluate the sufficiency of requirements for software security and the potential operational security risks based on mission impact.
Radio Frequency Identification (RFID) technology has been applied in many fields, such as tracking product through the supply chains, electronic passport (ePassport), proximity card, etc. Most companies will choose low-cost RFID tags. However, these RFID tags are almost no security mechanism so that criminals can easily clone these tags and get the user permissions. In this paper, we aim at more efficient detection proximity card be cloned and design a real-time intrusion detection system based on one tool of Complex Event Processing (Esper) in the RFID middleware. We will detect the cloned tags through training our system with the user's habits. When detected anomalous behavior which may clone tags have occurred, and then send the notification to user. We discuss the reliability of this intrusion detection system and describes in detail how to work.
Almost all commodity IT devices include firmware and software components from non-US suppliers, potentially introducing grave vulnerabilities to homeland security by enabling cyber-attacks via flaws injected into these devices through the supply chain. However, determining that a given device is free of any and all implementation flaws is computationally infeasible in the general case; hence a critical part of any vetting process is prioritizing what kinds of flaws are likely to enable potential adversary goals. We present Theseus, a four-year research project sponsored by the DARPA VET program. Theseus will provide technology to automatically map and explore the firmware/software (FW/SW) architecture of a commodity IT device and then generate attack scenarios for the device. From these device attack scenarios, Theseus then creates a prioritized checklist of FW/SW components to check for potential vulnerabilities. Theseus combines static program analysis, attack graph generation algorithms, and a Boolean satisfiability solver to automate the checklist generation workflow. We describe how Theseus exploits analogies between the commodity IT device problem and attack graph generation for networks. We also present a novel approach called Component Interaction Mapping to recover a formal model of a device's FW/SW architecture from which attack scenarios can be generated.
The Internet of Things (IoT), an emerging global network of uniquely identifiable embedded computing devices within the existing Internet infrastructure, is transforming how we live and work by increasing the connectedness of people and things on a scale that was once unimaginable. In addition to increased communication efficiency between connected objects, the IoT also brings new security and privacy challenges. Comprehensive measures that enable IoT device authentication and secure access control need to be established. Existing hardware, software, and network protection methods, however, are designed against fraction of real security issues and lack the capability to trace the provenance and history information of IoT devices. To mitigate this shortcoming, we propose an RFID-enabled solution that aims at protecting endpoint devices in IoT supply chain. We take advantage of the connection between RFID tag and control chip in an IoT device to enable data transfer from tag memory to centralized database for authentication once deployed. Finally, we evaluate the security of our proposed scheme against various attacks.
In order to enhance the supply chain security at airports, the German federal ministry of education and research has initiated the project ESECLOG (enhanced security in the air cargo chain) which has the goal to improve the threat detection accuracy using one-sided access methods. In this paper, we present a new X-ray backscatter technology for non-intrusive imaging of suspicious objects (mainly low-Z explosives) in luggage's and parcels with only a single-sided access. A key element in this technology is the X-ray backscatter camera embedded with a special twisted-slit collimator. The developed technology has efficiently resolved the problem related to the imaging of complex interior of the object by fixing source and object positions and changing only the scanning direction of the X-ray backscatter camera. Experiments were carried out on luggages and parcels packed with mock-up dangerous materials including liquid and solid explosive simulants. In addition, the quality of the X-ray backscatter image was enhanced by employing high-resolution digital detector arrays. Experimental results are discussed and the efficiency of the present technique to detect suspicious objects in luggages and parcels is demonstrated. At the end, important applications of the proposed backscatter imaging technology to the aviation security are presented.
- « first
- ‹ previous
- 1
- 2
- 3
- 4