Visible to the public Biblio

Filters: Keyword is Classification of Cyber-Physical System Adversaries  [Clear All Filters]
2017-02-03
Stanley Bak, University of Illinois at Urbana-Champaign, Fardin Abdi, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Marco Caccamo, University of Illinois at Urbana-Champaign.  2013.  Using Run-Time Checking to Provide Safety and Progress for Distributed Cyber-Physical Systems. 2013 IEEE 19th International Conference on Embedded and Real-Time Computing Systems and Applications.

Cyber-physical systems (CPS) may interact and manipulate objects in the physical world, and therefore ideally would have formal guarantees about their behavior. Performing statictime proofs of safety invariants, however, may be intractable for systems with distributed physical-world interactions. This is further complicated when realistic communication models are considered, for which there may not be bounds on message delays, or even that messages will eventually reach their destination. In this work, we address the challenge of proving safety and progress in distributed CPS communicating over an unreliable communication layer. This is done in two parts. First, we show that system safety can be verified by partially relying upon runtime checks, and that dropping messages if the run-time checks fail will maintain safety. Second, we use a notion of compatible action chains to guarantee system progress, despite unbounded message delays.We demonstrate the effectiveness of our approach on a multi-agent vehicle flocking system, and show that the overhead of the proposed run-time checks is not overbearing.

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Nitin Vaidya, University of Illinois at Urbana-Champaign.  2015.  Differentially Private Distributed Optimization. IEEE International Conference on Distributed Computing and Networks (ICDCN 2015), .

In distributed optimization and iterative consensus literature, a standard problem is for N agents to minimize a function f over a subset of Rn, where the cost function is expressed as Σ fi . In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private.  The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual’s cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value.  Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm.