Biblio
This paper proposes AERFAD, an anomaly detection method based on the autoencoder and the random forest, for solving the credit card fraud detection problem. The proposed AERFAD first utilizes the autoencoder to reduce the dimensionality of data and then uses the random forest to classify data as anomalous or normal. Large numbers of credit card transaction data of European cardholders are applied to AEFRAD to detect possible frauds for the sake of performance evaluation. When compared with related methods, AERFAD has relatively excellent performance in terms of the accuracy, true positive rate, true negative rate, and Matthews correlation coefficient.
In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?
In today's world, software is ubiquitous and relied upon to perform many important and critical functions. Unfortunately, software is riddled with security vulnerabilities that invite exploitation. Attackers are particularly attracted to software systems that hold sensitive data with the goal of compromising the data. For such systems, this paper proposes a modeling method applied at design time to identify and reduce the attack surface, which arises due to the locations containing sensitive data within the software system and the accessibility of those locations to attackers. The method reduces the attack surface by changing the design so that the number of such locations is reduced. The method performs these changes on a graphical model of the software system. The changes are then considered for application to the design of the actual system to improve its security.
Cybersecurity is a problem of growing relevance that impacts all facets of society. As a result, many researchers have become interested in studying cybercriminals and online hacker communities in order to develop more effective cyber defenses. In particular, analysis of hacker community contents may reveal existing and emerging threats that pose great risk to individuals, businesses, and government. Thus, we are interested in developing an automated methodology for identifying tangible and verifiable evidence of potential threats within hacker forums, IRC channels, and carding shops. To identify threats, we couple machine learning methodology with information retrieval techniques. Our approach allows us to distill potential threats from the entirety of collected hacker contents. We present several examples of identified threats found through our analysis techniques. Results suggest that hacker communities can be analyzed to aid in cyber threat detection, thus providing promising direction for future work.
Security decision-making is a critical task in tackling security threats affecting a system or process. It often involves selecting a suitable resolution action to tackle an identified security risk. To support this selection process, decision-makers should be able to evaluate and compare available decision options. This article introduces a modelling language that can be used to represent the effects of resolution actions on the stakeholders' goals, the crime process, and the attacker. In order to reach this aim, we develop a multidisciplinary framework that combines existing knowledge from the fields of software engineering, crime science, risk assessment, and quantitative decision analysis. The framework is illustrated through an application to a case of identity theft.
Security and making trust is the first step toward development in both real and virtual societies. Internet-based development is inevitable. Increasing penetration of technology in the internet banking and its effectiveness in contributing to banking profitability and prosperity requires that satisfied customers turn into loyal customers. Currently, a large number of cyber attacks have been focused on online banking systems, and these attacks are considered as a significant security threat. Banks or customers might become the victim of the most complicated financial crime, namely internet fraud. This study has developed an intelligent system that enables detecting the user's abnormal behavior in online banking. Since the user's behavior is associated with uncertainty, the system has been developed based on the fuzzy theory, This enables it to identify user behaviors and categorize suspicious behaviors with various levels of intensity. The performance of the fuzzy expert system has been evaluated using an receiver operating characteristic curve, which provides the accuracy of 94%. This expert system is optimistic to be used for improving e-banking services security and quality.
Black-box web application vulnerability scanners are automated tools that probe web applications for security vulnerabilities. In order to assess the current state of the art, we obtained access to eight leading tools and carried out a study of: (i) the class of vulnerabilities tested by these scanners, (ii) their effectiveness against target vulnerabilities, and (iii) the relevance of the target vulnerabilities to vulnerabilities found in the wild. To conduct our study we used a custom web application vulnerable to known and projected vulnerabilities, and previous versions of widely used web applications containing known vulnerabilities. Our results show the promise and effectiveness of automated tools, as a group, and also some limitations. In particular, "stored" forms of Cross Site Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are not currently found by many tools. Because our goal is to assess the potential of future research, not to evaluate specific vendors, we do not report comparative data or make any recommendations about purchase of specific tools.