Biblio
Assured Mission Delivery Network (AMDN) is a collaborative network to support data-intensive scientific collaborations in a multi-cloud environment. Each scientific collaboration group, called a mission, specifies a set of rules to handle computing and network resources. Security is an integral part of the AMDN design since the rules must be set by authorized users and the data generated by each mission may be privacy-sensitive. In this paper, we propose a CertificateLess cryptography-based Rule-management Protocol (CL-RP) for AMDN, which supports authenticated rule registrations and updates with non-repudiation. We evaluate CL-RP through test-bed experiments and compare it with other standard protocols.
Traditional intrusion detection systems (IDSs) work in isolation and can be easily compromised by unknown threats. An intrusion detection network (IDN) is a collaborative IDS network intended to overcome this weakness by allowing IDS peers to share detection knowledge and experience, and hence improve the overall accuracy of intrusion assessment. In this work, we design an IDN system, called GUIDEX, using gametheoretic modeling and trust management for peers to collaborate truthfully and actively. We first describe the system architecture and its individual components, and then establish a gametheoretic framework for the resource management component of GUIDEX. We establish the existence and uniqueness of a Nash equilibrium under which peers can communicate in a reciprocal incentive compatible manner. Based on the duality of the problem, we develop an iterative algorithm that converges geometrically to the equilibrium. Our numerical experiments and discrete event simulation demonstrate the convergence to the Nash equilibrium and the security features of GUIDEX against free riders, dishonest insiders and DoS attacks