Visible to the public Biblio

Filters: Keyword is turbo codes  [Clear All Filters]
2023-04-28
Aladi, Ahmed, Alsusa, Emad.  2022.  A Secure Turbo Codes Design on Physical Layer Security Based on Interleaving and Puncturing. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–7.
Nowadays, improving the reliability and security of the transmitted data has gained more attention with the increase in emerging power-limited and lightweight communication devices. Also, the transmission needs to meet specific latency requirements. Combining data encryption and encoding in one physical layer block has been exploited to study the effect on security and latency over traditional sequential data transmission. Some of the current works target secure error-correcting codes that may be candidates for post-quantum computing. However, modifying the popularly used channel coding techniques to guarantee secrecy and maintain the same error performance and complexity at the decoder is challenging since the structure of the channel coding blocks is altered which results in less optimal decoding performance. Also, the redundancy nature of the error-correcting codes complicates the encryption method. In this paper, we briefly review the proposed security schemes on Turbo codes. Then, we propose a secure turbo code design and compare it with the relevant security schemes in the literature. We show that the proposed method is more secure without adding complexity.
ISSN: 2577-2465
2022-12-06
Lafci, Mehmet, Ertuğ, Özgür.  2022.  Performance Optimization of 6LoWPAN Systems for RF AMR System Using Turbo and LDPC Codes. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1-4.

This work analyzed the coding gain that is provided in 6LoWPAN transceivers when channel-coding methods are used. There were made improvements at physical layer of 6LoWPAN technology in the system suggested. Performance analysis was performed using turbo, LDPC and convolutional codes on IEEE 802.15.4 standard that is used in the relevant physical layer. Code rate of convolutional and turbo codes are set to 1/3 and 1/4. For LDPC codes, the code rate is set as 3/4 and 5/6. According to simulation results obtained from the MATLAB environment, turbo codes give better results than LDPC and convolutional codes. It is seen that an average of 3 dB to 8 dB gain is achieved in turbo codes, in LDPC and convolutional coding, it is observed that the gain is between 2 dB and 6 dB depending on the modulation type and code rate.

2020-12-21
Padala, S. K., D'Souza, J..  2020.  Performance of Spatially Coupled LDPC Codes over Underwater Acoustic Communication Channel. 2020 National Conference on Communications (NCC). :1–5.
Underwater acoustic (UWA) channel is complex because of its multipath environment, Doppler shift and rapidly changing characteristics. Many of the UWA communication- based applications demand high data rates and reliable communication. The orthogonal frequency division multiplexing (OFDM) system is very effective in UWA channels and provides high data rate with low equalization complexity. It is a challenging task to achieve reliability over these channels. The low-density parity-check (LDPC) codes give a better error performance than turbo codes, for UWA channels. The spatially-coupled low-density parity-check (SC-LDPC) codes have been shown to have the capacity-achieving performance over terrestrial communication. In this paper, we have studied by simulation, the performance of protograph based SC-LDPC codes over shallow water acoustic environment with a communication range of 1000 m and channel bandwidth of 10 KHz. Our results show that SC-LDPC codes give 1 dB performance improvement over LDPC codes at a Bit Error Rate (BER) of 10-3 for the same latency constraints.
2020-06-15
Biradar, Shivleela, Sasi, Smitha.  2018.  Design and Implementation of Secure and Encoded Data Transmission Using Turbo Codes. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
The general idea to achieve error detection and correction is to add some extra bit to an original message, in which the receiver can use to check the flexibility of the message which has been delivered, and to recover the noisy data. Turbo code is one of the forward error correction method, which is able to achieve the channel capacity, with nearer Shannon limit, encoding and decoding of text and images are performed. Methods and the working have been explained in this paper. The error has also introduced and detection and correction of errors have been achieved. Transmission will be secure it can secure the information by the theft.
2019-11-25
Abdulwahab, Walled Khalid, Abdulrahman Kadhim, Abdulkareem.  2018.  Comparative Study of Channel Coding Schemes for 5G. 2018 International Conference on Advanced Science and Engineering (ICOASE). :239–243.
In this paper we look into 5G requirements for channel coding and review candidate channel coding schemes for 5G. A comparative study is presented for possible channel coding candidates of 5G covering Convolutional, Turbo, Low Density Parity Check (LDPC), and Polar codes. It seems that polar code with Successive Cancellation List (SCL) decoding using small list length (such as 8) is a promising choice for short message lengths (≤128 bits) due to its error performance and relatively low complexity. Also adopting non-binary LDPC can provide good performance on the expense of increased complexity but with better spectral efficiency. Considering the implementation, polar code with decoding algorithms based on SCL required small area and low power consumption when compared to LDPC codes. For larger message lengths (≥256 bits) turbo code can provide better performance at low coding rates (\textbackslashtextless;1/2).
2018-10-26
Brokalakis, A., Chondroulis, I., Papaefstathiou, I..  2018.  Extending the Forward Error Correction Paradigm for Multi-Hop Wireless Sensor Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

In typical Wireless Sensor Network (WSN) applications, the sensor nodes deployed are constrained both in computational and energy resources. For this reason, simple communication protocols are usually employed along with shortrange multi-hop topologies. In this paper, we challenge this notion and propose a structure that employs more robust (and naturally more complex) forward-error correction schemes in multi-hop extended star topologies. We demonstrate using simulation and real-world data based on popular WSN platforms that this approach can actually reduce the overall energy consumption of the nodes by significant margins (from 40 to 70%) compared to traditional WSN schemes that do not support sophisticated communication mechanisms and it is feasible to implement it economically without relying on expensive hardware.

2018-01-10
Jeyaprabha, T. J., Sumathi, G., Nivedha, P..  2017.  Smart and secure data storage using Encrypt-interleaving. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). :1–6.

In the recent years many companies are shifting towards cloud for expanding their business profit with least additional cost. Cloud computing is a growing technology which has emerged from the development of grid computing, virtualization and utility computing. Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources like networks, servers, storage, applications, and services that can be rapidly provisioned and released with minimal management effort or service provider interaction. There was a huge data loss during the recent Chennai floods during Dec 2015. If these data would have been stored at distributed data centers great loss could have been prevented. Though, such natural calamities are tempting many users to shift towards the cloud storage, security threats are inhibiting them to shift towards the cloud. Many solutions have been addressed for these security issues but they do not give guaranteed security. By guaranteed security we mean confidentiality, integrity and availability. Some of the existing techniques for providing security are Cryptographic Protocols, Data Sanitization, Predicate Logic, Access Control Mechanism, Honeypots, Sandboxing, Erasure Coding, RAID(Redundant Arrays of Independent Disks), Homomorphic Encryption and Split-Key Encryption. All these techniques either cannot work alone or adds computational and time complexity. An alternate scheme of combining encryption and channel coding schemes at one-go is proposed for increasing the levels of security. Hybrid encryption scheme is proposed to be used in the interleaver block of Turbo coder for avoiding burst error. Hybrid encryption avoids sharing of secret key via the unsecured channel. This provides both security and reliability by reducing error propagation effect with small additional cost and computational overhead. Time complexity can be reduced when encryption and encoding are done as a single process.

2017-02-14
A. Motamedi, M. Najafi, N. Erami.  2015.  "Parallel secure turbo code for security enhancement in physical layer". 2015 Signal Processing and Intelligent Systems Conference (SPIS). :179-184.

Turbo code has been one of the important subjects in coding theory since 1993. This code has low Bit Error Rate (BER) but decoding complexity and delay are big challenges. On the other hand, considering the complexity and delay of separate blocks for coding and encryption, if these processes are combined, the security and reliability of communication system are guaranteed. In this paper a secure decoding algorithm in parallel on General-Purpose Graphics Processing Units (GPGPU) is proposed. This is the first prototype of a fast and parallel Joint Channel-Security Coding (JCSC) system. Despite of encryption process, this algorithm maintains desired BER and increases decoding speed. We considered several techniques for parallelism: (1) distribute decoding load of a code word between multiple cores, (2) simultaneous decoding of several code words, (3) using protection techniques to prevent performance degradation. We also propose two kinds of optimizations to increase the decoding speed: (1) memory access improvement, (2) the use of new GPU properties such as concurrent kernel execution and advanced atomics to compensate buffering latency.

2017-02-10
T. S. Chaware, B. K. Mishra.  2015.  "Secure communication using TPC and chaotic encryption". 2015 International Conference on Information Processing (ICIP). :615-620.

Compression, encryption, encoding and modulation at the transmitter side and reverse process at the receiver side are the major processes in any wireless communication system. All these steps were carried out separately before. But, in 1978 R. J. McEliece had proposed the concept of combining security and channel encoding techniques together. Many schemes are proposed by different researchers for this combine approach. Sharing the information securely, but at the same time maintaining acceptable bit error rate in such combine system is difficult. In this paper, a new technique for robust and secure wireless transmission of image combining Turbo Product Code (TPC) with chaotic encryption is proposed. Logistic map is used for chaotic encryption and TPC for channel encoding. Simulation results for this combined system are analyzed and it shows that TPC and chaotic combination gives secure transmission with acceptable data rate.