Visible to the public Biblio

Filters: Keyword is image security  [Clear All Filters]
2023-07-14
Ratheesh, T K, Paul, Varghese.  2022.  A Public Key Cryptography based Mechanism for the Secure Transmission of RGB Images using Elliptic Curve based Hill Cipher and Magic Square Concept. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1–6.
The use of image data in multimedia communication based applications like military applications and medical images security applications are increasing every day and the secrecy of the image data is extremely important for such applications. A number of methods and techniques for securely transmitting images are proposed in the literature based on image encryption and steganography approaches. A novel mechanism for transmitting color images securely is proposed in this paper mainly based on public key cryptography mechanism also by combining the advantage of simplicity of symmetric schemes. The technique combines the strengths of Elliptic Curve Cryptography and the classical symmetric cryptographic mechanism called Hill Cipher encryption method. The technique also includes the concept of Magic Square for jumbling the pixels yielding maximum diffusion in the image pixels. In the performance evaluation, the proposed method proved that the new system works pretty well. The method is proved to be effective in maintaining the confidentiality of the image in transit and also for resisting security attacks.
2022-06-14
Dhane, Harshad, Manikandan, V. M..  2021.  A New Framework for Secure Biometric Data Transmission using Block-wise Reversible Data Hiding Through Encryption. 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–8.
Reversible data hiding (RDH) is an emerging area in the field of information security. The RDH schemes are widely explored in the field of cloud computing for data authentication and in medical image transmission for clinical data transmission along with medical images. The RDH schemes allow the data hider to embed sensitive information in digital content in such a way that later it can be extracted while recovering the original image. In this research, we explored the use of the RDH through the encryption scheme in a biometric authentication system. The internet of things (IoT) enabled biometric authentication systems are very common nowadays. In general, in biometric authentication, computationally complex tasks such as feature extraction and feature matching will be performed in a cloud server. The user-side devices will capture biometric data such as the face, fingerprint, or iris and it will be directly communicated to the cloud server for further processing. Since the confidentiality of biometric data needs to be maintained during the transmission, the original biometric data will be encrypted using any one of the data encryption techniques. In this manuscript, we propose the use of RDH through encryption approach to transmit two different biometric data as a single file without compromising confidentiality. The proposed scheme will ensure the integrity of the biometric data during transmission. For data hiding purposes, we have used a block-wise RDH through encryption scheme. The experimental study of the proposed scheme is carried out by embedding fingerprint data in the face images. The validation of the proposed scheme is carried out by extracting the fingerprint details from the face images during image decryption. The scheme ensures the exact recovery of face image images and fingerprint data at the receiver site.
2020-07-03
Singh, Neha, Joshi, Sandeep, Birla, Shilpi.  2019.  Suitability of Singular Value Decomposition for Image Watermarking. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :983—986.

Digital images are extensively used and exchanged through internet, which gave rise to the need of establishing authorship of images. Image watermarking has provided a solution to prevent false claims of ownership of the media. Information about the owner, generally in the form of a logo, text or image is imperceptibly hid into the subject. Many transforms have been explored by the researcher community for image watermarking. Many watermarking techniques have been developed based on Singular Value Decomposition (SVD) of images. This paper analyses Singular Value Decomposition to understand its use, ability and limitations to hide additional information into the cover image for Digital Image Watermarking application.

2020-06-26
Abir, Md. Towsif, Rahman, Lamiya, Miftah, Samit Shahnawaz, Sarker, Sudipta, Al Imran, Md. Ibrahim, Shafiqul Islam, Md..  2019.  Image Encryption and Decryption using Enigma Algorithm. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—5.

The main objective of this paper is to present a more secured and computationally efficient procedure of encrypting and decrypting images using the enigma algorithm in comparison to the existing methods. Available literature on image encryptions and descriptions are not highly secured in every case.To achieve more secured image processing for highly advanced technologies, a proposed algorithm can be the process used in enigma machine for image encryption and decryption. Enigma machine is piece of spook hardware that was used frequently during the World War II by the Germans. This paper describes the detailed algorithm along with proper demonstration of several essential components present in an enigma machine that is required for image security. Each pixel in a colorful picture can be represented by RGB (Red, Green, Blue) value. The range of RGB values is 0 to 255 that states the red, green and blue intensity of a particular picture.These RGB values are accessed one by one and changed into another by various steps and hence it is not possible to track the original RGB value. In order to retrieve the original image, the receiver needs to know the setting of the enigma. To compare the decrypted image with the original one,these two images are subtracted and their results are also discussed in this paper.

Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

2018-01-23
Gupta, P., Saini, S., Lata, K..  2017.  Securing qr codes by rsa on fpga. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2289–2295.

QR codes, intended for maximum accessibility are widely in use these days and can be scanned readily by mobile phones. Their ease of accessibility makes them vulnerable to attacks and tampering. Certain scenarios require a QR code to be accessed by a group of users only. This is done by making the QR code cryptographically secure with the help of a password (key) for encryption and decryption. Symmetric key algorithms like AES requires the sender and the receiver to have a shared secret key. However, the whole motive of security fails if the shared key is not secure enough. Therefore, in our design we secure the key, which is a grey image using RSA algorithm. In this paper, FPGA implementation of 1024 bit RSA encryption and decryption is presented. For encryption, computation of modular exponentiation for 1024 bit size with accuracy and efficiency is needed and it is carried out by repeated modular multiplication technique. For decryption, L-R binary approach is used which deploys modular multiplication module. Efficiency in our design is achieved in terms of throughput/area ratio as compared to existing implementations. QR codes security is demonstrated by deploying AES-RSA hybrid design in Xilinx System Generator(XSG). XSG helps in hardware co-simulation and reduces the difficulty in structural design. Further, to ensure efficient encryption of the shared key by RSA, histograms of the images of key before and after encryption are generated and analysed for strength of encryption.

2017-11-13
Sharma, P., Patel, D., Shah, D., Shukal, D..  2016.  Image security using Arnold method in tetrolet domain. 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC). :312–315.

The image contains a lot of visual as well as hidden information. Both, information must be secured at the time of transmission. With this motivation, a scheme is proposed based on encryption in tetrolet domain. For encryption, an iterative based Arnold transform is used in proposed methodology. The images are highly textured, which contains the authenticity of the image. For that, decryption process is performed in this way so that maximum, the edges and textures should be recovered, effectively. The suggested method has been tested on standard images and results obtained after applying suggested method are significant. A comparison is also performed with some standard existing methods to measure the effectiveness of the suggested method.

2017-02-14
P. Dahake, S. Nimbhorkar.  2015.  "Hybrid cryptosystem for maintaining image integrity using biometric fingerprint". 2015 International Conference on Pervasive Computing (ICPC). :1-5.

Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.