Visible to the public Biblio

Filters: Keyword is electrical engineering  [Clear All Filters]
2023-08-25
Chen, Qingqing, Zhou, Mi, Cai, Ziwen, Su, Sheng.  2022.  Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
2023-07-12
Tang, Muyi.  2022.  Research on Edge Network Security Technology Based on DHR. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :614—617.
This paper examines how the extent of the network has expanded from the traditional computer Internet to the field of edge computing based on mobile communication technology with the in-depth development of the mobile Internet and the Internet of Things. In particular, the introduction of 5G has enabled massive edge computing nodes to build a high-performance, energy-efficient and low-latency mobile edge computing architecture. Traditional network security technologies and methods are not fully applicable in this environment. The focus of this paper is on security protection for edge networks. Using virtualized networks builds a dynamic heterogeneous redundancy security model (i.e., DHR). It first designs and evaluates the DHR security model, then constructs the required virtualized heterogeneous entity set, and finally constructs a DHR-based active defense scheme. Compared with existing network security solutions, the security protection technology of the edge network studied this time has a better protective effect against the unknown security threats facing the edge network.
2023-05-12
Zhang, Chen, Wu, Zhouyang, Li, Xianghua, Liang, Jian, Jiang, Zhongyao, Luo, Ceheng, Wen, Fangjun, Wang, Guangda, Dai, Wei.  2022.  Resilience Assessment Method of Integrated Electricity and Gas System Based on Hetero-functional Graph Theory. 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). :34–39.
The resilience assessment of electric and gas networks gains importance due to increasing interdependencies caused by the coupling of gas-fired units. However, the gradually increasing scale of the integrated electricity and gas system (IEGS) poses a significant challenge to current assessment methods. The numerical analysis method is accurate but time-consuming, which may incur a significant computational cost in large-scale IEGS. Therefore, this paper proposes a resilience assessment method based on hetero-functional graph theory for IEGS to balance the accuracy with the computational complexity. In contrast to traditional graph theory, HFGT can effectively depict the coupled systems with inherent heterogeneity and can represent the structure of heterogeneous functional systems in a clear and unambiguous way. In addition, due to the advantages of modelling the system functionality, the effect of line-pack in the gas network on the system resilience is depicted more precisely in this paper. Simulation results on an IEGS with the IEEE 9-bus system and a 7-node gas system verify the effectiveness of the proposed method.
2023-04-28
Li, Zhiyu, Zhou, Xiang, Weng, Wenbin.  2022.  Operator Partitioning and Parallel Scheduling Optimization for Deep Learning Compiler. 2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :205–211.
TVM(tensor virtual machine) as a deep learning compiler which supports the conversion of machine learning models into TVM IR(intermediate representation) and to optimise the generation of high-performance machine code for various hardware platforms. While the traditional approach is to parallelise the cyclic transformations of operators, in this paper we partition the implementation of the operators in the deep learning compiler TVM with parallel scheduling to derive a faster running time solution for the operators. An optimisation algorithm for partitioning and parallel scheduling is designed for the deep learning compiler TVM, where operators such as two-dimensional convolutions are partitioned into multiple smaller implementations and several partitioned operators are run in parallel scheduling to derive the best operator partitioning and parallel scheduling decisions by means of performance estimation. To evaluate the effectiveness of the algorithm, multiple examples of the two-dimensional convolution operator, the average pooling operator, the maximum pooling operator, and the ReLU activation operator with different input sizes were tested on the CPU platform, and the performance of these operators was experimentally shown to be improved and the operators were run speedily.
2023-03-31
Habbak, Hany, Metwally, Khaled, Mattar, Ahmed Maher.  2022.  Securing Big Data: A Survey on Security Solutions. 2022 13th International Conference on Electrical Engineering (ICEENG). :145–149.
Big Data (BD) is the combination of several technologies which address the gathering, analyzing and storing of massive heterogeneous data. The tremendous spurt of the Internet of Things (IoT) and different technologies are the fundamental incentive behind this enduring development. Moreover, the analysis of this data requires high-performance servers for advanced and parallel data analytics. Thus, data owners with their limited capabilities may outsource their data to a powerful but untrusted environment, i.e., the Cloud. Furthermore, data analytic techniques performed on external cloud may arise various security intimidations regarding the confidentiality and the integrity of the aforementioned; transferred, analyzed, and stored data. To countermeasure these security issues and challenges, several techniques have been addressed. This survey paper aims to summarize and emphasize the security threats within Big Data framework, in addition, it is worth mentioning research work related to Big Data Analytics (BDA).
Heravi, Mohammad Mahdi Lotfi, Khorrampanah, Mahsa, Houshmand, Monireh.  2022.  Forecasting Crude Oil Prices Using Improved Deep Belief Network (IDBN) and Long-Term Short-Term Memory Network (LSTM). 2022 30th International Conference on Electrical Engineering (ICEE). :823–826.
Historically, energy resources are of strategic importance for the social welfare and economic growth. So, predicting crude oil price fluctuations is an important issue. Since crude oil price changes are affected by many risk factors in markets, this price shows more complicated nonlinear behavior and creates more risk levels for investors than in the past. We propose a new method of prediction of crude oil price to model nonlinear dynamics. The results of the experiments show that the superior performance of the model based on the proposed method against statistical previous works is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which is 0.81 lower than the related work (Chen et al. protocol), indicating an improvement in prediction accuracy.
ISSN: 2642-9527
Liu, Pengjuan, Ma, Jindou.  2022.  Rolling Bearing Fault Diagnosis based on Deep Belief Network. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :685–688.
In view of the characteristics that rolling bearing is prone to failure under actual working conditions, and it is difficult to classify the fault category and fault degree, the deep belief network is introduced to diagnose the rolling bearing fault. Firstly, principal component analysis is used to reduce the dimension of original input data and delete redundant input information. Then, the dimension reduced data are input into the deep belief network to extract the low dimensional fault feature representation, and the extracted features are input into the classifier for rolling bearing fault pattern recognition. Finally, the diagnosis effect of the proposed network is compared with the existing common shallow neural network. The simulation experiment is carried out through the bearing data in the United States.
2023-03-17
Chen, Xinghua, Huang, Lixian, Zheng, Dan, Chen, Jinchang, Li, Xinchao.  2022.  Research and Application of Communication Security in Security and Stability Control System of Power Grid. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1215–1221.
Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
2023-02-03
Zhang, Hua, Su, Xueneng.  2022.  Method for Vulnerability Analysis of Communication Link in Electric Cyber Physical System. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :41–46.
This paper conducts simulation analysis on power transmission lines and availability of power communication link based on Latin hypercube sampling. It proposes a new method of vulnerability communication link assessment for electric cyber physical system. Wind power output, transmission line failure and communication link failure of electric cyber physical system are sampled to obtain different operating states of electric cyber physical system. The connectivity of communication links under different operating states of electric cyber physical system is calculated to judge whether the communication nodes of the links are connected with the control master station. According to the connection between the link communication node and the control master station, the switching load and switching load of the electric cyber physical system in different operating states are calculated, and the optimal switching load of the electric cyber physical system in different operating states is obtained. This method can clearly identify the vulnerable link in the electric cyber physical system, so as to monitor the vulnerable link and strengthen the link strength.
2022-12-20
Miao, Weiwei, Jin, Chao, Zeng, Zeng, Bao, Zhejing, Wei, Xiaogang, Zhang, Rui.  2022.  A White-Box SM4 Implementation by Introducing Pseudo States Applied to Edge IoT Agents. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :154–160.
With the widespread application of power Internet of Things (IoT), the edge IoT agents are often threatened by various attacks, among which the white-box attack is the most serious. The white-box implementation of the cryptography algorithm can hide key information even in the white-box attack context by means of obfuscation. However, under the specially designed attack, there is still a risk of the information being recovered within a certain time complexity. In this paper, by introducing pseudo states, a new white-box implementation of SM4 algorithm is proposed. The encryption and decryption processes are implemented in the form of matrices and lookup tables, which are obfuscated by scrambling encodings. The introduction of pseudo states could complicate the obfuscation, leading to the great improvement in the security. The number of pseudo states can be changed according to the requirements of security. Through several quantitative indicators, including diversity, ambiguity, the time complexity required to extract the key and the value space of the key and external encodings, it is proved that the security of the proposed implementation could been enhanced significantly, compared with the existing schemes under similar memory occupation.
2022-07-29
Chen, Keren, Zheng, Nan, Cai, Qiyuan, Li, Yinan, Lin, Changyong, Li, Yuanfei.  2021.  Cyber-Physical Power System Vulnerability Analysis Based on Complex Network Theory. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). :482—486.
The vulnerability assessment of the cyber-physical power system based on complex network theory is applied in this paper. The influence of the power system statistics upon the system vulnerability is studied based on complex network theory. The electrical betweenness is defined to suitably describe the power system characteristics. The real power systems are utilized as examples to analyze the distribution of the degree and betweenness of the power system as a complex network. The topology model of the cyber-physical power system is formed, and the static analysis is implemented to the study of the cyber-physical power system structural vulnerability. The IEEE 300 bus test system is selected to verify the model.
2022-04-18
Li, Shuai, Dang, Fangfang, Yang, Ying, Liu, Han, Song, Yifan.  2021.  Research on Computer Network Security Protection System Based on Level Protection in Cloud Computing Environment. 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :428–431.
With the development of cloud computing technology, cloud services have been used by more and more traditional applications and products because of their unique advantages such as virtualization, high scalability and universality. In the cloud computing environment, computer networks often encounter security problems such as external attacks, hidden dangers in the network and hidden dangers in information sharing. The network security level protection system is the basic system of national network security work, which is the fundamental guarantee for promoting the healthy development of informatization and safeguarding national security, social order and public interests. This paper studies cloud computing security from the perspective of level protection, combining with the characteristics of cloud computing security. This scheme is not only an extension of information system level protection, but also a study of cloud computing security, aiming at cloud computing security control from the perspective of level protection.
2022-02-04
Cao, Wenbin, Qi, Xuanwei, Wang, Song, Chen, Ming, Yin, Xianggen, Wen, Minghao.  2021.  The Engineering Practical Calculation Method of Circulating Current in YD-connected Transformer. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). :1–5.
The circulating current in the D-winding may cause primary current waveform distortion, and the reliability of the restraint criterion based on the typical magnetizing inrush current characteristics will be affected. The magnetizing inrush current with typical characteristics is the sum of primary current and circulating current. Using the circulating current to compensate the primary current can improve the reliability of the differential protection. When the phase is not saturated, the magnetizing inrush current is about zero. Therefore, the primary current of unsaturated phase can be replaced by the opposite of the circulating current. Based on this, an engineering practical calculation method for circulating current is proposed. In the method, the segmented primary currents are used to replace the circulating current. Phasor analysis is used to demonstrate the application effect of this method when remanence coefficients are different. The method is simple and practical, and has strong applicability and high reliability. Simulation and recorded waveforms have verified the effectiveness of the method.
2022-01-31
Al-Qtiemat, Eman, Jafar, Iyad.  2021.  Intelligent Cache Replacement Algorithm for Web Proxy Caching based on Multi-level K-means Clustering. 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :278—282.
Proxy web caching is usually employed to maximize the efficiency and utilization of the network and the origin servers while reducing the request latency. However, and due to the limited cache size, some replacement policy has to be enforced in order to decide on the object(s) to be evicted from the cache once it is full. This paper introduces the use of the K-mean clustering to categorize the objects in the cache into groups of different priorities. This categorization is then used for replacement purposes such that the object(s) of lowest priority are chosen for eviction. The proposed improved the hit rate and the byte hit rate of the cache when compared to conventional and intelligent web proxy caching algorithms.
2021-10-12
Suharsono, Teguh Nurhadi, Anggraini, Dini, Kuspriyanto, Rahardjo, Budi, Gunawan.  2020.  Implementation of Simple Verifiability Metric to Measure the Degree of Verifiability of E-Voting Protocol. 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA. :1–3.
Verifiability is one of the parameters in e-voting that can increase confidence in voting technology with several parties ensuring that voters do not change their votes. Voting has become an important part of the democratization system, both to make choices regarding policies, to elect representatives to sit in the representative assembly, and to elect leaders. the more voters and the wider the distribution, the more complex the social life, and the need to manage the voting process efficiently and determine the results more quickly, electronic-based voting (e-Voting) is becoming a more promising option. The level of confidence in voting depends on the capabilities of the system. E-voting must have parameters that can be used as guidelines, which include the following: Accuracy, Invulnerability, Privacy and Verifiability. The implementation of the simple verifiability metric to measure the degree of verifiability in the e-voting protocol, the researchers can calculate the degree of verifiability in the e-voting protocol and the researchers have been able to assess the proposed e-voting protocol with the standard of the best degree of verifiability is 1, where the value of 1 is is absolutely verified protocol.
2021-08-11
Chheng, Kimhok, Priyadi, Ardyono, Pujiantara, Margo, Mahindara, Vincentius Raki.  2020.  The Coordination of Dual Setting DOCR for Ring System Using Adaptive Modified Firefly Algorithm. 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA). :44—50.
Directional Overcurrent Relays (DOCRs) play an essential role in the power system protection to guarantee the reliability, speed of relay operation and avoiding mal-trip in the primary and backup relays when unintentional fault conditions occur in the system. Moreover, the dual setting protection scheme is more efficient protection schemes for offering fast response protection and providing flexibility in the coordination of relay. In this paper, the Adaptive Modified Firefly Algorithm (AMFA) is used to determine the optimal coordination of dual setting DOCRs in the ring distribution system. The AMFA is completed by choosing the minimum value of pickup current (\textbackslashtextbackslashpmbI\textbackslashtextbackslashpmbP) and time dial setting (TDS). On the other hand, dual setting DOCRs protection scheme also proposed for operating in both forward and reverse directions that consisted of individual time current characteristics (TCC) curve for each direction. The previous method is applied to the ring distribution system network of PT. Pupuk Sriwidjaja by considering the fault on each bus. The result illustration that the AMFA within dual setting protection scheme is significantly reaching the optimized coordination and the relay coordination is certain for all simulation scenarios with the minimum operation. The AMFA has been successfully implemented in MATLAB software programming.
2021-05-13
Madanchi, Mehdi, Abolhassani, Bahman.  2020.  Authentication and Key Agreement Based Binary Tree for D2D Group Communication. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Emerging device-to-device (D2D) communication in 5th generation (5G) mobile communication networks and internet of things (loTs) provides many benefits in improving network capabilities such as energy consumption, communication delay and spectrum efficiency. D2D group communication has the potential for improving group-based services including group games and group discussions. Providing security in D2D group communication is the main challenge to make their wide usage possible. Nevertheless, the issue of security and privacy of D2D group communication has been less addressed in recent research work. In this paper, we propose an authentication and key agreement tree group-based (AKATGB) protocol to realize a secure and anonymous D2D group communication. In our protocol, a group of D2D users are first organized in a tree structure, authenticating each other without disclosing their identities and without any privacy violation. Then, D2D users negotiate to set a common group key for establishing a secure communication among themselves. Security analysis and performance evaluation of the proposed protocol show that it is effective and secure.

Aghabagherloo, Alireza, Mohajeri, Javad, Salmasizadeh, Mahmoud, Feghhi, Mahmood Mohassel.  2020.  An Efficient Anonymous Authentication Scheme Using Registration List in VANETs. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

Nowadays, Vehicular Ad hoc Networks (VANETs) are popularly known as they can reduce traffic and road accidents. These networks need several security requirements, such as anonymity, data authentication, confidentiality, traceability and cancellation of offending users, unlinkability, integrity, undeniability and access control. Authentication of the data and sender are most important security requirements in these networks. So many authentication schemes have been proposed up to now. One of the well-known techniques to provide users authentication in these networks is the authentication based on the smartcard (ASC). In this paper, we propose an ASC scheme that not only provides necessary security requirements such as anonymity, traceability and unlinkability in the VANETs but also is more efficient than the other schemes in the literatures.

2021-02-01
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
2021-01-28
Fathi, Z., Rafsanjani, A. J., Habibi, F..  2020.  Anon-ISAC: Anonymity-preserving cyber threat information sharing platform based on permissioned Blockchain. 2020 28th Iranian Conference on Electrical Engineering (ICEE). :1—5.

In cyber threat information sharing, secure transfer and protecting privacy are very important. In this paper we solve these issues by suggesting a platform based on private permissioned Blockchain, which provides us with access control as well. The platform is called Anon-ISAC and is built on the Enhanced Privacy ID (EPID) zero-knowledge proof scheme. It makes use of permissioned Blockchain as a way to keep identity anonymous. Organizations can share their information on incidents or other artifacts among trusted parties, while they keep their identity hidden. This will save them from unwanted consequences of exposure of sensitive security information.

2020-07-20
Huang, Rui, Wang, Panbao, Zaery, Mohamed, Wei, Wang, Xu, Dianguo.  2019.  A Distributed Fixed-Time Secondary Controller for DC Microgrids. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–6.

This paper proposes a distributed fixed-time based secondary controller for the DC microgrids (MGs) to overcome the drawbacks of conventional droop control. The controller, based on a distributed fixed-time control approach, can remove the DC voltage deviation and provide proportional current sharing simultaneously within a fixed-time. Comparing with the conventional centralized secondary controller, the controller, using the dynamic consensus, on each converter communicates only with its neighbors on a communication graph which increases the convergence speed and gets an improved performance. The proposed control strategy is simulated in PLECS to test the controller performance, link-failure resiliency, plug and play capability and the feasibility under different time delays.

2020-06-26
Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

2020-06-22
Beheshti-Atashgah, Mohammad, Aref, Mohammd Reza, Bayat, Majid, Barari, Morteza.  2019.  ID-based Strong Designated Verifier Signature Scheme and its Applications in Internet of Things. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1486–1491.
Strong designated verifier signature scheme is a concept in which a user (signer) can issue a digital signature for a special receiver; i.e. signature is produced in such way that only intended verifier can check the validity of produced signature. Of course, this type of signature scheme should be such that no third party is able to validate the signature. In other words, the related designated verifier cannot assign the issued signature to another third party. This article proposes a new ID-based strong designated verifier signature scheme which has provable security in the ROM (Random Oracle Model) and BDH assumption. The proposed scheme satisfies the all security requirements of an ID-based strong designated verifier signature scheme. In addition, we propose some usage scenarios for the proposed schemes in different applications in the Internet of Things and Cloud Computing era.
2019-01-31
Kazemi, M., Delavar, M., Mohajeri, J., Salmasizadeh, M..  2018.  On the Security of an Efficient Anonymous Authentication with Conditional Privacy-Preserving Scheme for Vehicular Ad Hoc Networks. Iranian Conference on Electrical Engineering (ICEE). :510–514.

Design of anonymous authentication scheme is one of the most important challenges in Vehicular Ad hoc Networks (VANET). Most of the existing schemes have high computational and communication overhead and they do not meet security requirements. Recently, Azees et al. have introduced an Efficient Anonymous Authentication with Conditional Privacy-Preserving (EAAP) scheme for VANET and claimed that it is secure. In this paper, we show that this protocol is vulnerable against replay attack, impersonation attack and message modification attack. Also, we show that the messages sent by a vehicle are linkable. Therefore, an adversary can easily track the vehicles. In addition, it is shown that vehicles face with some problems when they enter in a new Trusted Authority (TA) range. As a solution, we propose a new authentication protocol which is more secure than EAAP protocol without increasing its computational and communication overhead.

2018-01-16
Sagisi, J., Tront, J., Bradley, R. M..  2017.  Platform agnostic, scalable, and unobtrusive FPGA network processor design of moving target defense over IPv6 (MT6D) over IEEE 802.3 Ethernet. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :165–165.

This work presents the proof of concept implementation for the first hardware-based design of Moving Target Defense over IPv6 (MT6D) in full Register Transfer Level (RTL) logic, with future sights on an embedded Application-Specified Integrated Circuit (ASIC) implementation. Contributions are an IEEE 802.3 Ethernet stream-based in-line network packet processor with a specialized Complex Instruction Set Computer (CISC) instruction set architecture, RTL-based Network Time Protocol v4 synchronization, and a modular crypto engine. Traditional static network addressing allows attackers the incredible advantage of taking time to plan and execute attacks against a network. To counter, MT6D provides a network host obfuscation technique that offers network-based keyed access to specific hosts without altering existing network infrastructure and is an excellent technique for protecting the Internet of Things, IPv6 over Low Power Wireless Personal Area Networks, and high value globally routable IPv6 interfaces. This is done by crypto-graphically altering IPv6 network addresses every few seconds in a synchronous manner at all endpoints. A border gateway device can be used to intercept select packets to unobtrusively perform this action. Software driven implementations have posed many challenges, namely, constant code maintenance to remain compliant with all library and kernel dependencies, the need for a host computing platform, and less than optimal throughput. This work seeks to overcome these challenges in a lightweight system to be developed for practical wide deployment.