Biblio
Transmission techniques based on channel coding with feedback are proposed in this paper to enhance the security of wireless communications systems at the physical layer. Reliable and secure transmission over an additive noise Gaussian wiretap channel is investigated using Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC) channel codes. A hybrid automatic repeat-request (HARQ) protocol is used to allow for the retransmission of coded packets requested by the intended receiver (Bob). It is assumed that an eavesdropper (Eve) has access to all forward and feedback transmitted packets. To limit the information leakage to Eve, retransmitted packets are subdivided into smaller granular subpackets. Retransmissions are stopped as soon as the decoding process at the legitimate (Bob) receiver converges. For the hard decision decoded BCH codes, a framework to compute the frame error probability with granular HARQ is proposed. For LDPC codes, the HARQ retransmission requests are based on received symbols likelihood computations: the legitimate recipient request for the retransmission of the set of bits that are more likely to help for successful LDPC decoding. The performances of the proposed techniques are assessed for nul and negative security gap (SG) values, that is when the eavesdropper's channel benefits from equal or better channel conditions than the legitimate channel.
In typical Wireless Sensor Network (WSN) applications, the sensor nodes deployed are constrained both in computational and energy resources. For this reason, simple communication protocols are usually employed along with shortrange multi-hop topologies. In this paper, we challenge this notion and propose a structure that employs more robust (and naturally more complex) forward-error correction schemes in multi-hop extended star topologies. We demonstrate using simulation and real-world data based on popular WSN platforms that this approach can actually reduce the overall energy consumption of the nodes by significant margins (from 40 to 70%) compared to traditional WSN schemes that do not support sophisticated communication mechanisms and it is feasible to implement it economically without relying on expensive hardware.
In the last few years, a shift from mass production to mass customisation is observed in the industry. Easily reprogrammable robots that can perform a wide variety of tasks are desired to keep up with the trend of mass customisation while saving costs and development time. Learning by Demonstration (LfD) is an easy way to program the robots in an intuitive manner and provides a solution to this problem. In this work, we discuss and evaluate LAP, a three-stage LfD method that conforms to the criteria for the high-mix-low-volume (HMLV) industrial settings. The algorithm learns a trajectory in the task space after which small segments can be adapted on-the-fly by using a human-in-the-loop approach. The human operator acts as a high-level adaptation, correction and evaluation mechanism to guide the robot. This way, no sensors or complex feedback algorithms are needed to improve robot behaviour, so errors and inaccuracies induced by these subsystems are avoided. After the system performs at a satisfactory level after the adaptation, the operator will be removed from the loop. The robot will then proceed in a feed-forward fashion to optimise for speed. We demonstrate this method by simulating an industrial painting application. A KUKA LBR iiwa is taught how to draw an eight figure which is reshaped by the operator during adaptation.
Network functions (NFs), like firewall, NAT, IDS, have been widely deployed in today’s modern networks. However, currently there is no standard specification or modeling language that can accurately describe the complexity and diversity of different NFs. Recently there have been research efforts to propose NF models. However, they are often generated manually and thus error-prone. This paper proposes a method to automatically synthesize NF models via program analysis. We develop a tool called NFactor, which conducts code refactoring and program slicing on NF source code, in order to generate its forwarding model. We demonstrate its usefulness on two NFs and evaluate its correctness. A few applications of NFactor are described, including network verification.
How to debug large networks is always a challenging task. Software Defined Network (SDN) offers a centralized con- trol platform where operators can statically verify network policies, instead of checking configuration files device-by-device. While such a static verification is useful, it is still not enough: due to data plane faults, packets may not be forwarded according to control plane policies, resulting in network faults at runtime. To address this issue, we present VeriDP, a tool that can continuously monitor what we call control-data plane consistency, defined as the consistency between control plane policies and data plane forwarding behaviors. We prototype VeriDP with small modifications of both hardware and software SDN switches, and show that it can achieve a verification speed of 3 μs per packet, with a false negative rate as low as 0.1%, for the Stanford backbone and Internet2 topologies. In addition, when verification fails, VeriDP can localize faulty switches with a probability as high as 96% for fat tree topologies.
Nanonetworks consist of nanomachines that perform simple tasks (sensing, data processing and communication) at molecular scale. Nanonetworks promise novel solutions in various fields, such as biomedical, industrial and military. Reliable nanocommunications require error control. ARQ and complex Forward Error Correction (FEC) are not appropriate in nano-devices due to the peculiarities of Terahertz band, limited computation complexity and energy capacity. In this paper we propose Simple Block Nanocode (SBN) to provide reliable data transmission in electromagnetic nanocommunications. We compare it with the two reliable transmission codes in nanonetworks in the literature, minimum energy channel (MEC) and Low Weight Channel (LWC) codes. The results show that SBN outperforms MEC and LWC in terms of reliability and image quality at receiver. The results also show that a nano-device (with nano-camera) with harvesting module has enough energy to support perpetual image transmission.
A technical method regarding to the improvement of transmission capacity of an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a visible light emitting diode (LED) is proposed in this paper. An original OFDM signal, which is encoded by various multilevel digital modulations such as quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM), is converted into a sparse one and then compressed using an adaptive sampling with inverse discrete cosine transform, while its error-free reconstruction is implemented using a L1-minimization based on a Bayesian compressive sensing (CS). In case of QPSK symbols, the transmission capacity of the optical wireless OFDM link was increased from 31.12 Mb/s to 51.87 Mb/s at the compression ratio of 40 %, while It was improved from 62.5 Mb/s to 78.13 Mb/s at the compression ratio of 20 % under the 16-QAM symbols in the error free wireless transmission (forward error correction limit: bit error rate of 10-3).
This paper presents the Bit Error Rate (BER) performance of the wireless communication system. The complexity of modern wireless communication system are increasing at fast pace. It becomes challenging to design the hardware of wireless system. The proposed system consists of MIMO transmitter and MIMO receiver along with the along with a realistic fading channel. To make the data transmission more secure when the data are passed into channel Crypto-System with Embedded Error Control (CSEEC) is used. The system supports data security and reliability using forward error correction codes (FEC). Security is provided through the use of a new symmetric encryption algorithm, and reliability is provided by the use of FEC codes. The system aims at speeding up the encryption and encoding operations and reduces the hardware dedicated to each of these operations. The proposed system allows users to achieve more security and reliable communication. The proposed BER measurement communication system consumes low power compared to existing systems. Advantage of VLSI based BER measurement it that they can be used in the Real time applications and it provides single chip solution.
- « first
- ‹ previous
- 1
- 2
- 3