Biblio
This article reports results about the development of the algorithm that allows to increase the information security of OFDM communication system based on the discrete-nonlinear Colpitts system with dynamic chaos. Proposed system works on two layers: information and transport. In the first one, Arnold Transform was applied. The second one, transport level security was provided by QAM constellation mixing. Correlation coefficients, Shannon's entropy and peak-to-average power ratio (PAPR) were estimated.
In the original algorithm for grey correlation analysis, the detected edge is comparatively rough and the thresholds need determining in advance. Thus, an adaptive edge detection method based on grey correlation analysis is proposed, in which the basic principle of the original algorithm for grey correlation analysis is used to get adaptively automatic threshold according to the mean value of the 3×3 area pixels around the detecting pixel and the property of people's vision. Because the false edge that the proposed algorithm detected is relatively large, the proposed algorithm is enhanced by dealing with the eight neighboring pixels around the edge pixel, which is merged to get the final edge map. The experimental results show that the algorithm can get more complete edge map with better continuity by comparing with the traditional edge detection algorithms.
This paper considers the complex of models for the description, analysis, and modeling of group behavior by user actions in complex social systems. In particular, electoral processes can be considered in which preferences are selected from several possible ones. For example, for two candidates, the choice is made from three states: for the candidate A, for candidate B and undecided (candidate C). Thus, any of the voters can be in one of the three states, and the interaction between them leads to the transition between the states with some delay time intervals, which are one of the parameters of the proposed models. The dynamics of changes in the preferences of voters can be described graphically on diagram of possible transitions between states, on the basis of which is possible to write a system of differential kinetic equations that describes the process. The analysis of the obtained solutions shows the possibility of existence within the model, different modes of changing the preferences of voters. In the developed model of stochastic cellular automata with variable memory at each step of the interaction process between its cells, a new network of random links is established, the minimum and the maximum number of which is selected from a given range. At the initial time, a cell of each type is assigned a numeric parameter that specifies the number of steps during which will retain its type (cell memory). The transition of cells between states is determined by the total number of cells of different types with which there was interaction at the given number of memory steps. After the number of steps equal to the depth of memory, transition to the type that had the maximum value of its sum occurs. The effect of external factors (such as media) on changes in node types can set for each step using a transition probability matrix. Processing of the electoral campaign's sociological data of 2015-2016 at the choice of the President of the United States using the method of almost-periodic functions allowed to estimate the parameters of a set of models and use them to describe, analyze and model the group behavior of voters. The studies show a good correspondence between the data observed in sociology and calculations using a set of developed models. Under some sets of values of the coefficients in the differential equations and models of cellular automata are observed the oscillating and almost-periodic character of changes in the preferences of the electorate, which largely coincides with the real observations.
There were many researches about the parameter estimation of canonical dynamic systems recently. Extended Kalman filter (EKF) is a popular parameter estimation method in virtue of its easy applications. This paper focuses on parameter estimation for a class of canonical dynamic systems by EKF. By constructing associated differential equation, the convergence of EKF parameter estimation for the canonical dynamic systems is analyzed. And the simulation demonstrates the good performance.
The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.
In this paper, we focus on the principal-agent problems in continuous time when the participants have ambiguity on the output process in the framework of g-expectation. The first best (or, risk-sharing) type is studied. The necessary condition of the optimal contract is derived by means of the optimal control theory. Finally, we present some examples to clarify our results.
Wireless sensor networks (WSNs) are prone to propagating malware because of special characteristics of sensor nodes. Considering the fact that sensor nodes periodically enter sleep mode to save energy, we develop traditional epidemic theory and construct a malware propagation model consisting of seven states. We formulate differential equations to represent the dynamics between states. We view the decision-making problem between system and malware as an optimal control problem; therefore, we formulate a malware-defense differential game in which the system can dynamically choose its strategies to minimize the overall cost whereas the malware intelligently varies its strategies over time to maximize this cost. We prove the existence of the saddle-point in the game. Further, we attain optimal dynamic strategies for the system and malware, which are bang-bang controls that can be conveniently operated and are suitable for sensor nodes. Experiments identify factors that influence the propagation of malware. We also determine that optimal dynamic strategies can reduce the overall cost to a certain extent and can suppress the malware propagation. These results support a theoretical foundation to limit malware in WSNs.