Biblio
Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.
Now-a-days, video steganography has developed for a secured communication among various users. The two important factor of steganography method are embedding potency and embedding payload. Here, a Multiple Object Tracking (MOT) algorithmic programs used to detect motion object, also shows foreground mask. Discrete wavelet Transform (DWT) and Discrete Cosine Transform (DCT) are used for message embedding and extraction stage. In existing system Least significant bit method was proposed. This technique of hiding data may lose some data after some file transformation. The suggested Multiple object tracking algorithm increases embedding and extraction speed, also protects secret message against various attackers.
This paper presents an image technique Discrete Wavelet Transform and Singular Value Decomposition for image steganography. We are using a text file and convert into an image as watermark and embed watermarks into the cover image. We evaluate performance and compare this method with other methods like Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform using Peak Signal Noise Ratio and Mean Squared Error. The result of this experiment showed that combine of Discrete Wavelet Transform and Singular Value Decomposition performance is better than the Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform. The result of Peak Signal Noise Ratio obtained from Discrete Wavelet Transform and Singular Value Decomposition method is 57.0519 and 56.9520 while the result of Mean Squared Error is 0.1282 and 0.1311. Future work for this research is to add the encryption method on the data to be entered so that if there is an attack then the encryption method can secure the data becomes more secure.
Blind objective metrics to automatically quantify perceived image quality degradation introduced by blur, is highly beneficial for current digital imaging systems. We present, in this paper, a perceptual no reference blur assessment metric developed in the frequency domain. As blurring affects specially edges and fine image details, that represent high frequency components of an image, the main idea turns on analysing, perceptually, the impact of blur distortion on high frequencies using the Discrete Cosine Transform DCT and the Just noticeable blur concept JNB relying on the Human Visual System. Comprehensive testing demonstrates the proposed Perceptual Blind Blur Quality Metric (PBBQM) good consistency with subjective quality scores as well as satisfactory performance in comparison with both the representative non perceptual and perceptual state-of-the-art blind blur quality measures.
The main emphasis of this paper is to develop an approach able to detect and assess blindly the perceptual blur degradation in images. The idea deals with a statistical modelling of perceptual blur degradation in the frequency domain using the discrete cosine transform (DCT) and the Just Noticeable Blur (JNB) concept. A machine learning system is then trained using the considered statistical features to detect perceptual blur effect in the acquired image and eventually produces a quality score denoted BBQM for Blind Blur Quality Metric. The proposed BBQM efficiency is tested objectively by evaluating it's performance against some existing metrics in terms of correlation with subjective scores.
Images acquired and processed in communication and multimedia systems are often noisy. Thus, pre-filtering is a typical stage to remove noise. At this stage, a special attention has to be paid to image visual quality. This paper analyzes denoising efficiency from the viewpoint of visual quality improvement using metrics that take into account human vision system (HVS). Specific features of the paper consist in, first, considering filters based on discrete cosine transform (DCT) and, second, analyzing the filter performance locally. Such an analysis is possible due to the structure and peculiarities of the metric PSNR-HVS-M. It is shown that a more advanced DCT-based filter BM3D outperforms a simpler (and faster) conventional DCT-based filter in locally active regions, i.e., neighborhoods of edges and small-sized objects. This conclusions allows accelerating BM3D filter and can be used in further improvement of the analyzed denoising techniques.
Discrete Cosine Transform (DCT) is used in JPEG compression, image encryption, image watermarking and channel estimation. In this paper, an Application Specific Processor (ASP) for DCT based applications is designed and implemented to Field Programmable Gate Array (FPGA). One dimensional DCT and IDCT hardwares which have fully parallel architecture have been implemented and connected to MicroBlaze softcore processer. To show a basic application of ASP, DCT based image watermarking example is studied in this system.