Biblio
The new era of information communication and technology (ICT), everyone wants to store/share their Data or information in online media, like in cloud database, mobile database, grid database, drives etc. When the data is stored in online media the main problem is arises related to data is privacy because different types of hacker, attacker or crackers wants to disclose their private information as publically. Security is a continuous process of protecting the data or information from attacks. For securing that information from those kinds of unauthorized people we proposed and implement of one the technique based on the data modification concept with taking the iris database on weka tool. And this paper provides the high privacy in distributed clustered database environments.
Physical perturbations are performed against embedded systems that can contain valuable data. Such devices and in particular smart cards are targeted because potential attackers hold them. The embedded system security must hold against intentional hardware failures that can result in software errors. In a malicious purpose, an attacker could exploit such errors to find out secret data or disrupt a transaction. Simulation techniques help to point out fault injection vulnerabilities and come at an early stage in the development process. This paper proposes a generic fault injection simulation tool that has the particularity to embed the injection mechanism into the smart card source code. By its embedded nature, the Embedded Fault Simulator (EFS) allows us to perform fault injection simulations and side-channel analyses simultaneously. It makes it possible to achieve combined attacks, multiple fault attacks and to perform backward analyses. We appraise our approach on real, modern and complex smart card systems under data and control flow fault models. We illustrate the EFS capacities by performing a practical combined attack on an Advanced Encryption Standard (AES) implementation.