Visible to the public Biblio

Filters: Keyword is digital data  [Clear All Filters]
2021-04-08
Al-Dhaqm, A., Razak, S. A., Dampier, D. A., Choo, K. R., Siddique, K., Ikuesan, R. A., Alqarni, A., Kebande, V. R..  2020.  Categorization and Organization of Database Forensic Investigation Processes. IEEE Access. 8:112846—112858.
Database forensic investigation (DBFI) is an important area of research within digital forensics. It's importance is growing as digital data becomes more extensive and commonplace. The challenges associated with DBFI are numerous, and one of the challenges is the lack of a harmonized DBFI process for investigators to follow. In this paper, therefore, we conduct a survey of existing literature with the hope of understanding the body of work already accomplished. Furthermore, we build on the existing literature to present a harmonized DBFI process using design science research methodology. This harmonized DBFI process has been developed based on three key categories (i.e. planning, preparation and pre-response, acquisition and preservation, and analysis and reconstruction). Furthermore, the DBFI has been designed to avoid confusion or ambiguity, as well as providing practitioners with a systematic method of performing DBFI with a higher degree of certainty.
2020-01-21
Shehu, Abubakar-Sadiq, Pinto, António, Correia, Manuel E..  2019.  Privacy Preservation and Mandate Representation in Identity Management Systems. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
The growth in Internet usage has increased the use of electronic services requiring users to register their identity on each service they subscribe to. This has resulted in the prevalence of redundant users data on different services. To protect and regulate access by users to these services identity management systems (IdMs)are put in place. IdMs uses frameworks and standards e.g SAML, OAuth and Shibboleth to manage digital identities of users for identification and authentication process for a service provider. However, current IdMs have not been able to address privacy issues (unauthorised and fine-grained access)that relate to protecting users identity and private data on web services. Many implementations of these frameworks are only concerned with the identification and authentication process of users but not authorisation. They mostly give full control of users digital identities and data to identity and service providers with less or no users participation. This results in a less privacy enhanced solutions that manage users available data in the electronic space. This article proposes a user-centred mandate representation system that empowers resource owners to take full of their digital data; determine and delegate access rights using their mobile phone. Thereby giving users autonomous powers on their resources to grant access to authenticated entities at their will. Our solution is based on the OpenID Connect framework for authorisation service. To evaluate the proposal, we've compared it with some related works and the privacy requirements yardstick outlined in GDPR regulation [1] and [2]. Compared to other systems that use OAuth 2.0 or SAML our solution uses an additional layer of security, where data owner assumes full control over the disclosure of their identity data through an assertion issued from their mobile phones to authorisation server (AS), which in turn issues an access token. This would enable data owners to assert the authenticity of a request, while service providers and requestors also benefit from the correctness and freshness of identity data disclosed to them.
2017-03-07
Kao, D. Y..  2015.  Performing an APT Investigation: Using People-Process-Technology-Strategy Model in Digital Triage Forensics. 2015 IEEE 39th Annual Computer Software and Applications Conference. 3:47–52.

Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.

2017-02-14
D. Y. Kao.  2015.  "Performing an APT Investigation: Using People-Process-Technology-Strategy Model in Digital Triage Forensics". 2015 IEEE 39th Annual Computer Software and Applications Conference. 3:47-52.

Taiwan has become the frontline in an emerging cyberspace battle. Cyberattacks from different countries are constantly reported during past decades. The incident of Advanced Persistent Threat (APT) is analyzed from the golden triangle components (people, process and technology) to ensure the application of digital forensics. This study presents a novel People-Process-Technology-Strategy (PPTS) model by implementing a triage investigative step to identify evidence dynamics in digital data and essential information in auditing logs. The result of this study is expected to improve APT investigation. The investigation scenario of this proposed methodology is illustrated by applying to some APT incidents in Taiwan.